1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?

Slides:



Advertisements
Similar presentations
ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala
Advertisements

Fall 2006Costas Busch - RPI1 Turing Machines. Fall 2006Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines.
Deterministic Turing Machines
Lecture 16 Deterministic Turing Machine (DTM) Finite Control tape head.
Variants of Turing machines
CS 461 – Oct. 21 Begin chapter 3 We need a better (more encompassing) model of computation. Ex. { 1 n 2 n 3 n } couldn’t be accepted by PDA. –How could.
1 If we modify the machine for the language from F12 p. 47 we can easily construct a machine for the language Observation Turing machine for the language.
Turing machines Sipser 2.3 and 3.1 (pages )
Turing machines Sipser 2.3 and 3.1 (pages )
Turing Machines New capabilities: –infinite tape –can read OR write to tape –read/write head can move left and right q0q0 input tape.
Turing’s Thesis Fall 2006 Costas Busch - RPI.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Fall 2004COMP 3351 Turing Machines. Fall 2004COMP 3352 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 The Chomsky Hierarchy. 2 Unrestricted Grammars: Rules have form String of variables and terminals String of variables and terminals.
CS 310 – Fall 2006 Pacific University CS310 Turing Machines Section 3.1 November 6, 2006.
Courtesy Costas Busch - RPI1 Turing Machines. Courtesy Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines.
Fall 2006Costas Busch - RPI1 Pushdown Automata PDAs.
1 Decidability continued. 2 Undecidable Problems Halting Problem: Does machine halt on input ? State-entry Problem: Does machine enter state halt on input.
CS5371 Theory of Computation Lecture 10: Computability Theory I (Turing Machine)
Key to Homework #2 1. What is the language of L-system G = ({a, b, c}, h, acb ), where the rewriting rule h is defined as follows: h (a) = aa h (b) = cb.
Costas Busch - RPI1 Turing Machines. Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Prof. Busch - LSU1 Turing Machines. Prof. Busch - LSU2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Fall 2005Costas Busch - RPI1 Pushdown Automata PDAs.
1 Turing Machines. 2 A Turing Machine Tape Read-Write head Control Unit.
Turing Machines A more powerful computation model than a PDA ?
CSCI 2670 Introduction to Theory of Computing September 28, 2005.
 Computability Theory Turing Machines Professor MSc. Ivan A. Escobar
Turing Machines Chapter 17. Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing.
THE CHURCH-TURING T H E S I S “ TURING MACHINES” Part 1 – Pages COMPUTABILITY THEORY.
D E C I D A B I L I T Y 1. 2 Objectives To investigate the power of algorithms to solve problems. To explore the limits of algorithmic solvability. To.
1 Design a PDA which accepts: L= { a n b m : n ≠ m }
CS 208: Computing Theory Assoc. Prof. Dr. Brahim Hnich
Theory of computing, part 4. 1Introduction 2Theoretical background Biochemistry/molecular biology 3Theoretical background computer science 4History of.
Costas Busch - LSU1 Turing’s Thesis. Costas Busch - LSU2 Turing’s thesis (1930): Any computation carried out by mechanical means can be performed by a.
CS 3240: Languages and Computation
1 Section 13.1 Turing Machines A Turing machine (TM) is a simple computer that has an infinite amount of storage in the form of cells on an infinite tape.
1 IDT Open Seminar ALAN TURING AND HIS LEGACY 100 Years Turing celebration Gordana Dodig Crnkovic, Computer Science and Network Department Mälardalen University.
1 Turing Machines and Equivalent Models Section 13.1 Turing Machines.
1 Turing Machines - Chap 8 Turing Machines Recursive and Recursively Enumerable Languages.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Introduction to Turing Machines
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 12 Mälardalen University 2007.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines. The next level of Machine… PDAs improved on FSAs by adding memory. We make the memory more flexible to do more complicated tasks.
Turing Machines CS 130 Theory of Computation HMU Textbook: Chap 8.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
CSCI 2670 Introduction to Theory of Computing September 29, 2005.
Turing’s Thesis Costas Busch - LSU.
Busch Complexity Lectures: Turing Machines
Deterministic Turing Machines
COSC 3340: Introduction to Theory of Computation
Busch Complexity Lectures: Reductions
Reductions Costas Busch - LSU.
Pumping Lemma Revisited
Pushdown Automata PDAs
Pushdown Automata PDAs
COSC 3340: Introduction to Theory of Computation
Turing Machines 2nd 2017 Lecture 9.
Turing Machines Acceptors; Enumerators
Modeling Computation:
Chapter 9 TURING MACHINES.
Turing Machines (11.5) Based on slides by Costas Busch from the course
Theory of computing, part 4
COSC 3340: Introduction to Theory of Computation
Variants of Turing machines
Formal Definitions for Turing Machines
Presentation transcript:

1 Turing Machines

2 The Language Hierarchy Regular Languages Context-Free Languages ? ?

3 Regular Languages Context-Free Languages Languages accepted by Turing Machines

4 A Turing Machine Tape Read-Write head

5 The Tape Read-Write head No boundaries -- infinite length The head moves Left or Right

Read-Write head The head at each transition (time step): 1. Reads a symbol 2. Writes a symbol 3. Moves Left or Right

Example: Time Time 1 1. Reads 2. Writes 3. Moves Left

Time Time 2 1. Reads 2. Writes 3. Moves Right

9 The Input String Blank symbol head Head starts at the leftmost position of the input string Input string

10 States & Transitions Read Write Move Left Move Right

11 Example: Time 1 current state

Time Time 2

Time Time 2 Example:

Time Time 2 Example:

15 Partial Transition Function Example: No transition for input symbol Allowed:

16 Halting The machine halts in a state if there is no transition to follow

17 Halting Example 1: No transition from HALT!!!

18 Halting Example 2: No possible transition from and symbol HALT!!!

19 Accepting States Allowed Not Allowed Accepting states have no outgoing transitions The machine halts and accepts

20 Acceptance Accept Input If machine halts in an accept state Reject Input If machine halts in a non-accept state or If machine enters an infinite loop string

21 Turing Machine Example Accepts the language: Input alphabet

22 Time 0

23 Time 1

24 Time 2

25 Time 3

26 Time 4 Halt & Accept

27 Rejection Example Time 0

28 Time 1 No possible Transition Halt & Reject

29 Another Turing Machine Example Turing machine for the language

30 Match a’s with b’s: Repeat: replace leftmost a with x find leftmost b and replace it with y Until there are no more a’s or b’s If there is a remaining a or b reject Basic Idea:

31 Time 0

32 Time 1

33 Time 2

34 Time 3

35 Time 4

36 Time 5

37 Time 6

38 Time 7

39 Time 8

40 Time 9

41 Time 10

42 Time 11

43 Time 12

44 Halt & Accept Time 13

45 If we modify the machine for the language we can easily construct a machine for the language Observation: