Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.

Slides:



Advertisements
Similar presentations
E. Atkin, E. Malankin, V. Shumikhin NRNU MEPhI, Moscow 1.
Advertisements

R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
August SGSS front end, Summary August 2008 Edwin Spencer, SCIPP1 SGST Preview SCIPP, UC Santa Cruz Andrey Martchovsky Gregory Horn Edwin Spencer.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
A.Kashchuk Muon meeting, CERN Presented by A.Kashchuk.
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
AIDA design review Davide Braga Steve Thomas ASIC Design Group 9 January 2008.
Preliminary LumiCAL FEE Specification Presented by Alexander Solin NC PHEP FCAL collaboration meeting, February 12-13, 2006, Krakow (INP PAS),
Challenges and advantages making analog front-ends (for Silicon Strip Detectors) in deep submicron technologies Jan Kaplon.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
FULLY DIFFERENTIAL OPAMP Eduardo Picatoste Calorimeter Electronics Upgrade Meeting.
ECE4430 Project Presentation
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Design & Development of an Integrated Readout System for Triple-GEM Detectors Alessandro PEZZOTTA III Year PhD Seminar, Cycle XXVIII 22 September 2015.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori.
Meeting from Mai 10th at ETHZ ArgonTube electronics Charge amplifier or linear amplifer ? Front end module Max Hess.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Proposal of a digital-analog RPC front-end for synchronous density particle measure for DHCAL application R.Cardarelli and R.Santonico INFN and University.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
Politecnico di Milano & INFN 1 SVT FE 04/11/2011 Update on analog design for L4-L5 B.Nasri, P.Trigilio, L.Bombelli, C.Fiorini SVT FE confcall – 04/11/11.
S.Zucca a,c, L. Gaioni b,c, A. Manazza a,c, M. Manghisoni b,c, L. Ratti a,c V. Re b,c, E. Quartieri a,c, G. Traversi b,c a Università degli Studi di Pavia.
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Update on analog design for L4-L5
“Test vehicle” in 130nm TSMC for CMS HGCAL
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Valerio Re Università di Bergamo and INFN, Pavia, Italy
AIDA design review 31 July 2008 Davide Braga Steve Thomas
KLOE II Inner Tracker FEE
Pixel front-end development
Frontend Electronic Update
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
L. Ratti Università degli Studi di Pavia INFN Pavia
A General Purpose Charge Readout Chip for TPC Applications
Charge sensitive amplifier
Calorimeter Mu2e Development electronics Front-end Review
INFN Pavia and University of Bergamo
INFN Pavia / University of Bergamo
R&D activity dedicated to the VFE of the Si-W Ecal
DCH FEE 28 chs DCH prototype FEE &
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
HPD with external readout
A Readout Electronics System for GEM Detectors
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
A Fast Binary Front - End using a Novel Current-Mode Technique
Status of n-XYTER read-out chain at GSI
BESIII EMC electronics
Status of the CARIOCA project
Analog Front-end electronics for the outer layers of the SuperB SVT: design and expected performances Luca Bombelli1,2 on behalf of the SVT-SuperB Group.
Presentation transcript:

Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor

Analog Front End Electronics 2 Table of Contents I.ENC estimation of input MOSFET II.“Ideal” Shapers noise performances III.Proposed architecture of Front End circuit Charge Pre-Amplifier performances Shapers implementations I.Conclusion and future activities

Analog Front End Electronics 3 ENC estimation of input MOSFET Considered parameters:Detector parameters:  1 MIP ≈ electrons  Dynamic range ≈ ±15 MIP  Noise = 1000 electrons Detector (Cd, Rs) Charge preamplifier (ideal) Shaping amplifier (CR-(RC) 2 ideal) (NMOS, PMOS) Layer Rs (  ) Cd (pF)

Analog Front End Electronics 4 Optimization of input MOSFET ENC estimation for different sizes of input MOSFET  Example: Layer 5, NMOS, I bias =500µA, T P =1µs

Analog Front End Electronics 5 Optimization of input MOSFET current ENC estimation for different Ibias  Layer 5  TP=1µs  NMOS W=9mm, L=250nm  PMOS W=7mm, L=150mm ENC estimation for different Ibias  Layer 4  TP=0.5µs  NMOS W=9mm, L=250nm  PMOS W=7mm, L=150mm

Analog Front End Electronics 6 Shaper study Types of the shaper:  Real-pole shaper  Complex-pole shaper Compared with the same detection efficiency (constant Tw)  Peaking time of the Real shaper  Peaking time of the Complex shaper Order of the ShaperRU-2RU-3RU-4RU-5RU-6RU-7RU-8RU-9 Peaking time(µs) Order of the ShaperCU-2CU-3CU-4CU-5CU-6CU-7CU-9 Peaking time(µs) ° order 5° order

Analog Front End Electronics 7 Noise performance of the considered Shapers  Increasing the order after 5 is not useful.  The performance of both types are quite similar with a small advantage for the complex-pole shaper Layer 5 NMOS:W=9mm L=250nm

Analog Front End Electronics Readout architecture 8 First pole of the shaper implemented in the preamplifier Advantages: Simple architecture (area, power) High sensitivity (1/Cf) in the charge preamplifier (no pile-up at the PRE output) Leakage current of detector intrinsically discharged Drawback: Noise of the Rf Complex or real poles

Analog Front End Electronics 9 Charge Pre-Amplifier Types of the preamplifier:  NMOS was selected as input FET  Two charge Pre-amplifier were designed and compared 3-stages amplifiers Folded-cascode architecture  The results show better performance of 3-stage amplifier Specification3-stage CPAFolded-cascode CPA DC gain (dB) BW (MHz) PM (Deg) Rise time (ns) Slew rate (V/µs) Dynamic range (MIP)5747 Output voltage peak from DC level 15MIP

Analog Front End Electronics 10 Charge Pre-Amplifier Dynamic Range Cadence simulation of the preamplifier Output of Charge Pre-amplifier in different MIPs Linearity error of the charge Pre amplifier at the output of the shaper +15 MIPs -15 MIPs

Analog Front End Electronics Preliminary shaper architecture : CR – RC 2 11 Very simple implementation of the real-poles Tentative shaper already designed.

Analog Front End Electronics Preliminary implementation of the complex-pole shaper 12 Implementation of 2 complex-pole with Sallen-key architecture. Possibility to design a fully differential architecture (currently under evaluation).

Analog Front End Electronics Output preamp L5, 15 MIPs 13

Analog Front End Electronics Power dissipation Design targets: 1,2 mW/channel All Triple-well nMOSFET, low-Vt pMOSFET Keep constant power request Vs. Input signal PSRR: Shaper Ok, differential amplifier Preamplifier Sensibility to GND 14 Input FetCharge Pre-amplifier ShaperRest of the circuit 500µA140µA83µANA Current consumption Used power: 0.87 mW

Analog Front End Electronics Noise evaluation of the circuit Charge Pre-Amplifier with real-pole shaper 15 Peak. time Strip Rs Input FET Charge Pre-amplifier Rf Other shaper stages Total Layer51us Layer 4500ns ENC of the different stages. (All values in electrons rms)

Analog Front End Electronics Analog FE efficiency simulation  CR – RC 2 shaping  Efficiency based on BG hit energy distribution Data from: M. Manghisoni, L. Ratti, C. Stella. 16 Layer C D (pF) Selected T p (ns) Hit rate/stripe (KHz) Efficiency

Analog Front End Electronics Conclusion and future activities Refine preamplifier design and define ultimate performances Choose shaper filter (type, order, differential structure?) Design final shaper (also including an inversion stage) Design the remaning blocks (BLR, trim. DACs, ToT,....) 17