Field Effect Transistors

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Chapter 6: Field-Effect Transistors
Field Effect Transistors
Field Effect Transistor characteristics
FET ( Field Effect Transistor)
Chapter 6 The Field Effect Transistor
J-FET (Junction Field Effect Transistor) Introduction The field-effect transistor (FET) controls the current between two points but does so differently.
Transistors These are three terminal devices, where the current or voltage at one terminal, the input terminal, controls the flow of current between the.
FET ( Field Effect Transistor)
NAME OF FACULTY : MR. Harekrushna Avaiya DEPARTMENT: E.C. (PPI-1ST) BASIC ELECTRONICS.
The metal-oxide field-effect transistor (MOSFET)
Field Effect Transistor (FET)
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
ELEC 121 ELEC 121 Author unknown whsmsepiphany4.googlepages.com
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 20.1 Field-Effect Transistors  Introduction  An Overview of Field-Effect.
Field Effect Transistors Topics Covered in Chapter : JFETs and Their Characteristics 30-2: Biasing Techniques for JFETs 30-3: JFET Amplifiers 30-4:
FET ( Field Effect Transistor)
Lecture on Field Effect Transistor (FET) by:- Uttampreet Singh Lecturer-Electrical Engg. Govt. Polytechnic College, G.T.B.garh, Moga.
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
Field Effect Transistors
Introduction to FET’s Current Controlled vs Voltage Controlled Devices.
Field-Effect Transistor
Junction Field Effect Transistor
Field-Effect Transistors
FET ( Field Effect Transistor)
Chapter 5: Field–Effect Transistors
Field Effect Transistor (FET)
Field Effect Transistors Next to the bipolar device that has been studied thus far the Field Effect Transistor is very common in electronic circuitry,
Field Effect Transistors By Er. S.GHOSH
Chapter 5: Field Effect Transistor
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 5-1 Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
DMT121 – ELECTRONIC DEVICES
Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.
Filed Effect Transistor.  In 1945, Shockley had an idea for making a solid state device out of semiconductors.  He reasoned that a strong electrical.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
Field Effect Transistors
Chapter 12 : Field – Effect Transistors 12-1 NMOS and PMOS transistors 12-2 Load-line analysis of a simple NMOS amplifier 12-3 Small –signal equivalent.
© 2000 Prentice Hall Inc. Figure 5.1 n-Channel enhancement MOSFET showing channel length L and channel width W.
CHAP3: MOS Field-Effect Transistors (MOSFETs)
Junction Field Effect Transistor
1 Other Transistor Topologies 30 March and 1 April 2015 The two gate terminals are tied together to form single gate connection; the source terminal is.
1 DMT 121 – ELECTRONIC DEVICES CHAPTER 5: FIELD-EFFECT TRANSISTOR (FET)
CHAPTER 5 FIELD EFFECT TRANSISTORS(part c) (FETs).
Field Effect Transistor (FET)
SMALL SIGNAL FET (Field– Effect Transistors) AMPLIFIER 1.Introduction/Basic 2.FET Small-Signal Model 3.Fixed-Bias Configuration 4.Self-Bias Configuration.
Farzana R. ZakiCSE 177/ EEE 1771 Lecture – 19. Farzana R. ZakiCSE 177/ EEE 1772 MOSFET Construction & operation of Depletion type MOSFET Plotting transfer.
CHAPTER 5 FIELD EFFECT TRANSISTORS(part a) (FETs).
Field-effect transistors ( FETs) MD.MASOOD AHMAD ASST.PROF ECE DEPT.
FET FET’s (Field – Effect Transistors) are much like BJT’s (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MALVINO & BATES SEVENTH EDITION Electronic PRINCIPLES.
course Name: Semiconductors
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 9.
SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY  SUB – Electronics devices & Circuits  Topic- JFET  Student name – Kirmani Sehrish  Enroll. No
BJT transistors FET ( Field Effect Transistor) 1. Unipolar device i. e. operation depends on only one type of charge carriers (h or e) 2. Voltage controlled.
Electronics Technology Fundamentals Chapter 21 Field-Effect Transistors and Circuits.
Hardik Patel & Jatin Patel
CHAPTER 4 :JFET Junction Field Effect Transistor.
FET ( Field Effect Transistor) 1.Unipolar device i. e. operation depends on only one type of charge carriers (h or e) 2.Voltage controlled.
FET JFET MOSFET Introduction  The MOSFET (metal oxide semiconductor field effect transistor) It is another category of field effect transistor.
JFET &MOSFET PREPARED BY  JAYSWAL JAYDEEP ( )  GOHIL DARSHAN ( )  PARMAR NARESH ( )  THAKOR MAHESH ( )
SIGMA INSTITUTE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING ACTIVE LEARNING ASSIGNMENT TOPIC ON: PREPARED BY; BHAGYASHRI SHRIVASTAV( )
MOSFET The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device which is widely used for switching and amplifying.
Field Effect Transistor
ChapTer FiVE FIELD EFFECT TRANSISTORS (FETs)
Lecture on Field Effect Transistor (FET) by: GEC Bhavnagar
MOSFET POWERPOINT PRESENTATION BY:- POONAM SHARMA LECTURER ELECTRICAL
Subject Name: Electronic Circuits Subject Code:10cs32
Solid State Electronics ECE-1109
Presentation transcript:

Field Effect Transistors

Introduction Two main types of FET: - JFET –Junction field effects transistor MOSFET – Metal oxide semiconductor field effect transistor D-MOSFET ~ Depletion MOSFET E-MOSFET ~ Enhancement MOSFET Similarities: -Amplifiers -Switching devices -Impedance matching circuits Differences: -FET’s are voltage controlled devices whereas BJT’s are current controlled devices. -FET’s also have a higher input impedance, but BJT’s have higher gains. -FET’s are less sensitive to temperature variations and more easily integrated on IC’s. - FET’s are also generally more static sensitive than BJT’s.

Introduction types of FET: JFET –Junction field effects transistor JFET is a unipolar-transistor, which acts as a voltage controlled current device and is a device in which current at two electrodes is controlled by the action of an electric field at a reversed biased p-n junction.

Construction and characteristics of JFET N-channel device will appear as the prominent device with paragraph and section devoted to the impact of using a p-channel. Major part of structure is n-type material. Top of the n-type channel is connected through an ohmic contact to a terminal referred to as the drain (D) The lower end-connected through an ohmic contact to a terminal referred as source (S) P-type materials are connected together and to the gate (G) terminal. JFET has two p-n junctions under no-bias conditions.

Construction and characteristics of JFET N-Channel JFET Circuit Layout

JFET Operating Characteristics There are three basic operating conditions for a JFET: VGS = 0, VDS increasing to some positive value B. VGS < 0, VDS at some positive value C. Voltage-Controlled Resistor

Voltage-Controlled Resistor The region to the left of the pinch-off point is called the ohmic region. The JFET can be used as a variable resistor, where VGS controls the drain-source resistance (rd). As VGS becomes more negative, the resistance (rd) increases.

p-Channel JFETS p-Channel JFET acts the same as the n-channel JFET, except the polarities and currents are reversed.

P-Channel JFET Characteristics As VGS increases more positively: the depletion zone increases ID decreases (ID < IDSS) eventually ID = 0A Also note that at high levels of VDS the JFET reaches a breakdown situation. ID increases uncontrollably if VDS> VDSmax.

JFET Symbols

MOSFETs MOSFET Field effect transistor is a unipolar transistor, which acts as a voltage-controlled current device and is a device in which current at two electrodes drain and source is controlled by the action of an electric field at another electrode gate having in-between semiconductor and metal very a thin metal oxide layer

MOSFETs MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful. There are 2 types: Depletion-Type MOSFET Enhancement-Type MOSFET

Depletion-Type MOSFET Construction The Drain (D) and Source (S) connect to the to n-doped regions. These N-doped regions are connected via an n-channel. This n-channel is connected to the Gate (G) via a thin insulating layer of SiO2. The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS.

Depletion-type MOSFET in Depletion Mode The characteristics are similar to the JFET. When VGS = 0V, ID = IDSS When VGS < 0V, ID < IDSS The formula used to plot the Transfer Curve still applies:

Symbols

Enhancement-Type MOSFET Construction The Drain (D) and Source (S) connect to the to n-doped regions. These n-doped regions are connected via an n-channel. The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO2. There is no channel. The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS.

Enhancement-Type MOSFET Construction VGS=0, VDS some value, the absence of an n-channel will result in a current of effectively 0A VDS some positive voltage, VGS=0V, and terminal SS is directly connected to the source, there are in fact 2 reversed-biased p-n junction between the n-doped regions and p substrate to oppose any significant flow between drain and source. VDS and VGS have been set at some positive voltage greater than 0V, establishing the D and G at a positive potential with respect to the source The positive potential at the gate will pressure the holes in the p substrate along the edge of the SiO2 layer to leave the area and enter deeper regions of the p-substrate The result is a depletion region near the SiO2 insulating layer void of holes

Symbols

VMOS VMOS – Vertical MOSFET increases the surface area of the device. Advantage: This allows the device to handle higher currents by providing it more surface area to dissipate the heat. VMOSs also have faster switching times.

CMOS CMOS – Complementary MOSFET p-channel and n-channel MOSFET on the same substrate. Advantage: Useful in logic circuit designs Higher input impedance Faster switching speeds Lower operating power levels