Atlas 3D – 19 janv 2010 Patrick Pangaud ATLAS_3D ATLAS_3D by CPPM Motivations –Démontrer l’intérêt du 3D pour l’accroissement de la fonctionnalité pour.

Slides:



Advertisements
Similar presentations
Ecole micro-électronique, La londe-les-maures, 14 oct 2009 Pixel Hybride 3-D en techno 0.13µm pour SLHC/ATLAS P. Pangaud S. Godiot a, M. Barbero b, B.
Advertisements

Preparation run Tezzaron-Chartered A.Rozanov 1 Introduction Restarts test on PS en Avril 2009 Mesure PS SEU chip SEU-IBM Mhz avec FPGA.
CURRENTLY AND ADVANCED PIXEL DESIGNS FOR HEP Patrick Pangaud Centre de Physique des Particules de Marseille C.P.P.M 163, avenue de Luminy Case
Token Bit Manager for the CMS Pixel Readout
11/5/2004EE 42 fall 2004 lecture 281 Lecture #28 PMOS LAST TIME: NMOS Electrical Model – NMOS physical structure: W and L and d ox, TODAY: PMOS –Physical.
Microwave Interference Effects on Device,
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
ACES Workshop 3-4 March, 2009 W. Dabrowski Serial power circuitry in the ABC-Next and FE-I4 chips W. Dabrowski Faculty of Physics and Applied Computer.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
3D chip and sensor Status of the VICTOR chip and associated sensor Bonding and interconnect of chip and sensor Input on sensor design and interconnection.
R. Kluit Electronics Department Nikhef, Amsterdam. Integrated Circuit Design.
3D Integration activities AIDA WP3 Frascati 2013 Abdenour LOUNIS, AIDA Frascati 2013 Abdenour LOUNIS, G. Martin Chassard, Damien Thienpont, Jeanne Tong-Bong.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers M. Bochenek 1,2, W. Dąbrowski 2, F. Faccio 1, S. Michelis 1 1. CERN, Conseil Européen.
3D Vertex Detector Status The requirement for complex functionality in a small pixel led us to investigate vertically integrated (3D) processes. Developed.
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
DEPFET Electronics Ivan Peric, Mannheim University.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
ATLAS pixel electronics RD for upgrade inner pixel layers A.Rozanov (CPPM-IN2P3-CNRS) 1FCPPL 9 April 2011 A.Rozanov.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
From hybrids pixels to smart vertex detectors using 3D technologies 3D microelectronics technologies for trackers.
Report on TIPP D-IC Satellite Meeting Carl Grace June 21, 2011.
Process Monitor/TID Characterization Valencia M. Joyner.
Radiation Hardness Test Chip Matthias Harter, Peter Fischer Uni Mannheim.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
Work Package 3 On-detector Power Management Schemes ESR Michal Bochenek ACEOLE Twelve Month Meeting 1st October 2009 WPL Jan Kaplon.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
Foundry Characteristics
The TSV Revolution and Fermilab’s MPW Run Experiences R. Yarema Fermilab TIPP 2011, Chicago June 8-13.
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
P. Aspell PACE 3 design meeting 10,11/10/02 Thursday Analog : Morning : DELTA : Delta architecture, project status..... Paul Front-end design
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
Special Focus Session On CMOS MAPS and 3D Silicon R. Yarema On Behalf of Fermilab Pixel Development Group.
Motivation for 65nm CMOS technology
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Organization for Micro-Electronics desiGn and Applications Ludovic Raux OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
The First 3D Multiproject Run for HEP Ray Yarema On behalf of 3DIC Consortium September 23, 2009 Paris, France Topical Workshop on Experiments for Particle.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
17 nov FEC4_P2 status P.Pangaud ; S.Godiot ; R.Fei ; JP.Luo Remember : P2 from P1 Optimization of Rad-Hard block and SEU tolerance blocs Optimization.
RD53 1.  Full/large demonstrator chip submission ◦ When: 2016 A.Early 2016: If chip must have been fully demonstrated in test beams for TDRs to be made.
R. Kluit Electronics Department Nikhef, Amsterdam. Integrated Circuit Design.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Plans 2009/2010 CPPM 9 June 2009 A.Rozanov 1 Introduction Preparation FE-I4 Preparation FE-TC4-Proto Tests CPPM FE-I4-Proto Tests au PS CERN en 2009.
ADVANCED PIXELS STATUS FOR FUTURE HEP EXPERIMENTS Leader: Alexandre ROZANOV Dr.CPPM, In2p3 Leader: Zheng WANG Pr.IHEP, CAS Patrick PANGAUDEng.CPPMWei WEIDr.IHEP.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
BUILDING BLOCKS designed at IPHC in TOWER JAZZ CMOS Image Sensor 0.18 µm process Isabelle Valin on behalf of IPHC-PICSEL group.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
SKIROC status Calice meeting – Kobe – 10/05/2007.
DEVELOPMENTS ON ATLAS PIXEL DETECTORS Patrick Pangaud Centre de Physique des Particules de Marseille C.P.P.M 163, avenue de Luminy Case Marseille.
HV2FEI4 and 3D A.Rozanov CPPM 9 December 2011 A.Rozanov.
10-12 April 2013, INFN-LNF, Frascati, Italy
L. Rattia for the VIPIX collaboration
DCD – Measurements and Plans
PID meeting SCATS Status on front end design
VMM Update Front End ASIC for the ATLAS Muon Upgrade
The 3-D IT: The new challenge for ATLAS Pixel detectors
OMEGAPIX 3D IC prototype for the ATLAS upgrade SLHC pixel project Journées VLSI 22th June, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
SKIROC status Calice meeting – Kobe – 10/05/2007.
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
9 December 2011 CPPM- P.Pangaud HV2FEI4 simulations CPPM P.Pangaud.
Preliminary design of the behavior level model of the chip
Presentation transcript:

Atlas 3D – 19 janv 2010 Patrick Pangaud ATLAS_3D ATLAS_3D by CPPM Motivations –Démontrer l’intérêt du 3D pour l’accroissement de la fonctionnalité pour une surface donnée fixe The « More Moore’s Law » –Mise en œuvre auprès d’un détecteur comme les pixels ATLAS Plus petits pixels Mélange de technologies Interfaçage Sensor-Asic Réalisations –Choix du couple Tezzaron-Chartered –Démonstrateur 3-D « à la » FEI4 –Validation de la technologie CHARTERED Terminologie : FEC4_Px : Front-End Chartered Proto x FETC4_AEDS : Front-End Tezzaron-Chartered Analog Electron Digital Simple FETC4_AEDC : Front-End Tezzaron-Chartered Analog Electron Digital Complex FETC4_A : Front-End Tezzaron-Chartered Version A

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Status Remember : P2 from P1 Optimization of Rad-Hard block and SEU tolerance blocs Optimization of Analogue part vs Chartered Technology But to follow the IBM release FEI4_P1 chip, we kept the same functionalities Reduce the pixel size to 125µmPlan Analog Pixel and analog functions Global register Digital Buffers SEU latch Next … FEC4_P1 : submitted in Fev 2009 FEC4_P2 : submitted in Nov 2009

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4 : Pixel overview ( size 50 x 166) FEC4_P1 FEC4_P2 1st SEU LATCH version FEC4_P2 2nd SEU LATCH version From FEI4_P1 : Basically Technology translation from IBM to Chartered FEC4_P2 : Optimization of analog part and a new SEUlatch FEC4_P2 : Optimization of analog part and a second new SEUlatch

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Main changes in analogue pixel The objectives were : – Not to change the structure – Simulate and adjust size of transistors

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Preamplifier FEC4-P1 : –MN2 : 3µ/200n, nf=2, nmos_1p5_lvt –T21 : 6,25µ/300n, nf=2, nmos_1p5_nat FEC4-P2 : –MN2 : 5,5µ/300n, nf=1, nmos_1p5_nat –T21 : 5,5µ/300n, nf=2, nmos_1p5_nat  For Process variation : Better behavior with the same kind of transistor…

Atlas 3D – 19 janv 2010 Patrick Pangaud To deal with increased Vt and to improve the linearity : Nf = 4 To increase the linearity : Bulk and source connected only 1 transistor (not 2 in series) with the same equivalent size FEC4_P2 : Amplifier2

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Simulation results typical process linearity : Noise from 60 e- to 200 e- depending on : –the process case –the capacitor value of the sensor (from 0 to 400fF) –The sensor current (from 0 to 100nA) ampli2 preampliampli2 preampli

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Global Register Due to a defect working after irradiation, we decided to replace the SEU_LATCH cell by a LATCH Standard Cell from ARM.

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Global register cell FEC4_P2 : Global register cell Arm latch Port definition G : Load signal, the latch hold signal from DFF while the load signal is”0”. SN : Connect with a TIETHL. So the state always is “1”. RN : Clear signal. Connect it with an ‘Not gate’. So the ltchclr is high positive. D : Connect with DFF’s output ‘Q’. Q : The output of latch. Follow by a buffer. QN : Not used. Functions: RNSNGDQ[n+1]QN[n+1 ] XQ[n]QN[n] 01XX01 10XX10 00xX10

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : layout of the Global register cell FEC4_P2 : layout of the Global register cell 49.1u*82.3u of FEC4_P1 per 16 cell 49u*82.3u of FEC4_P2 per 16 cell

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Modification of Digital Buffers

Atlas 3D – 19 janv 2010 Patrick Pangaud Fist stage, N: 0.44/0.14 P: 1.25/0.14 Second stage, N: 4.5/0.14 P: 13.5/0.14 FEC4_P1 : The Digital output buffer

Atlas 3D – 19 janv 2010 Patrick Pangaud Fist stage, N: 4.625/0.13 P: 12/0.13 Second stage, N: /0.13 P: 36/0.13 Wellguardring for PMOS Enclosed Layout Transistor Guardring for NMOS FEC4_P2 : The Digital output buffer

Atlas 3D – 19 janv 2010 Patrick Pangaud Frequency of the input signal: 1/20ns (50MHz). Mode transistors: typical. Load capa = 10p. P1 P2 rise time: 4,494ns fall time: 5,341ns rise time: 1.786ns, fall time: 1.657ns FEC4_P2 : Simulation results of the Digital output buffer

Atlas 3D – 19 janv 2010 Patrick Pangaud 20psftypicalfs rise time3,1133,528 4,07 4 fall time3,7753,265 2, p rise time3,8464,401 5,08 3 fall time4,7334,1033,59 1 FEC4_P2 : More simulation results of the Digital output buffer

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : SEU Latch in Pixel cell Some ideas… –Optimization of the SEU Latch block –New layout –With and without ELT –Try the Triple Nwell But only new layout and with and without ELT have been implemented

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : SEU_LATCH (DICE) version 1 Added buffers at the inputs and outputs and load. Removed the Reset function. Linear Transistors used + guardring All corners simulation are OK

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : SEU_LATCH (DICE) version 2 Added buffers at the inputs and outputs and load. Removed the Reset function. Replaced the Load switch by a Tgate ELT Transistors used + guardring All corners simulation are OK

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : SEU_LATCH (DICE) version 3 Added buffers at the inputs and outputs and load. Removed the Reset function. Add Triple well and removed the Dual function ELT Transistors used + guardring Very bigger cell Not implemented. Not enough time ….. But very exiting approach

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Other changes Current mirrors at the output of global DAC : L is increased (for a small improvement of matching and noise) (for example 1µ/1µ becomes 1µ/4µ…) Analogue buffers : → Not enough time to design a real output buffer. → Layout is drawn with enclosed NMOS. Layout correction For FEC4-P1, suba, subd, gnda and gndd are not correctly separated. → This is corrected for P2. PADs ring : new approach (the same used for FETC4) → suba and subd are separated from gnd and sub of ESD protection. → use of dedicated PADs for VDDAIO, VDDDIO and GNDAIO, GNDDIO (PADs power).

Atlas 3D – 19 janv 2010 Patrick Pangaud FEC4_P2 : Conclusion …. Optimization of design : OK Repaired Test transitors : OK Checked the ESD Pads : OK Reduced the pixel size : NOK Added a real analog buffer : NOK Awaiting test results (dies arrived previous week)

Atlas 3D – 19 janv 2010 Patrick Pangaud FETC4_xx : MPW 3D-Fermilab 26mm 31mm Technology : Chartered 0,13µm LP + Tezzaron SuperContact ILC ATLAS LBNL

Atlas 3D – 19 janv 2010 Patrick Pangaud FETC4_xx : ATLAS Band -C FETC4-AE SEU-3D FETC4-DS SEU-3D TSV Daisy Chain + BI TSV vs Transistors + Capacités TSV vs Transistors + Capacités Contraintes Mécaniques DFF + Trans + Cap Contraintes Mécaniques DFF + Trans + Cap

Atlas 3D – 19 janv 2010 Patrick Pangaud FETC4_xx : ATLAS Band -D FETC4-AE FETC4-DC OmegaPix Analog OmegaPix Analog OmegaPix Digital OmegaPix Digital TSV vs Transistors Capa TSV avec Bump TSV vs Transistors Capa TSV avec Bump TSV vs Transistors

Atlas 3D – 19 janv 2010 Patrick Pangaud FETC4_xx : LBNL- Fermilab band -G FETC4-AH FETC4-DS

Atlas 3D – 19 janv 2010 Patrick Pangaud FETC4_xx : 3D ATLAS projets FETC4 –AE (CPPM) : pareil que FEI4_Proto1, mais en Chartered 0,13LP FETC4-DS (CPPM) : Shift Register + compteur +readout data. "Drum registers" FETC4-DC (Bonn-CPPM) : Lecture à double colonnes "à la FEI4" FETC4-AH (LBL-CPPM): pareil que FEI4_Proto1 mais avec collection de trous. SEU-3D (CPPM) : circuit numérique résistant au SEU " à la FEI4" Multiples structures de tests (CPPM) –Daisy chain des TSV + BI (avec mesure de la résistance) –Capacités des TSV avec ou sans BackMetal, avec ou sans Bump –Transistors de test (Linéaire et ELT) proches des TSV –Effets de stress mécaniques sur les composants (Trans, Capa, Res, DFF)

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A Motivation of a 3D-IT approach in HEP –smaller pixels and more functionality by pixel –Mixed technologies –Replacement for pixel bump bonding (Finer pitch bonding? Lower cost bonding?) Higher performance pixels detectors Motivation of using Tezzaron-Chartered technology –Seems the only low-cost foundry at this time –Large reticule (26 mm x 31 mm) –Chartered (2D) MPW

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A Organization –Same FEI4_A specification but with half-size pixel –Dedicated collaboration ‘à la’ FEI4_A. –Most important blocks should be implanted Dedicated Blocks prototype –Prototype approach by using Chartered MPW

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : Tezzaron-Chartered in HEP 3D assembling of 2 tiers (T1 and T2) Tezzaron : –Via first. –Super-Contacts (Through Silicon contacts) are formed before the BEOL of Chartered technology. –Back-side metal for bonding (after thinning). –2 wafers (tier 1 and tier 2) are stacked face to face with Cu-Cu thermo-compression Chartered: –0.13LP technology with standard and low VT transistors. –Zero Vt transistors. –Deep nwell nmos. – I/O transistors for 1.8 to 3.3V operation. –MiM capacitor (single mask : 1fF/µm²). –5 levels of metals and a redistribution of Top metal layer (M6) for bonding. –A 26 x 31 mm reticule size.

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : specifications To be compatible with FEI4_A sensor

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : building blocks From FETC4_P1 ( to be finalized) To be synthesized with ARM cells To be developed ( 2D MPW to validate them) Which blocks into T1/T2 ?? Same FEI4 blocks, but only essential blocks, first.

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : organisation CAD tools –Cadence IC6.1.4 Last 0.13LP Chartered PDK –Cliosoft –Calibre 2009 –Customized ARM cells Chip development approach –The same organization than FEI4_A –Shared project –Fundamental blocks would be implemented. –2D Chartered MPW run to validate new cells.

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : Chartered MPW 2010 FEC4_P1 and FEC4_P2 made in 2009, to validate the technology’s translation FEC4_P3 could validate more functionalities closed the FEI4_A final design FEC4_P3 Next submission dates

Atlas 3D – 19 janv 2010 Patrick Pangaud FE TC 4_A : 3D-run Submission FERMILAB MPW_2 21x20 mm ATLAS The FETC4_A development could be start soon. The team can grow later, but the design strategy should be fixed before. Realistic schedule to be defined according to the design’s team ATLAS or CMP MPW_2 ? 21x20 mm ATLAS