EESFYE, Patras April 14-16/2011 Fancy Neutrino Oscillometry-on Settling the Reactor Neutrino Anomaly) (LOW ENERGY NEUTRINOS IN A BO X) J.D. Vergados*,

Slides:



Advertisements
Similar presentations
CERN AXION SOLAR TELESCOPE Statusreport to SPSC Representing the CAST collaboration: Dieter H.H. Hoffmann TU-Darmstadt & GSI- Darmstadt Geneve
Advertisements

Oscillation formalism
1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Neutrino Masses, Leptogenesis and Beyond The Incredible Foresight of ETTORE MAJORANA Haim Harari Erice, August 31, 2006.
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Neutrino Physics - Lecture 1 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
Neutrino Physics Steve Elliott LANL Nuclear Physics Summer School 2005.
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Neutrino Physics - Lecture 3 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
P461 - particles VIII1 Neutrino Physics Three “active” neutrino flavors (from Z width measurements). Mass limit from beta decay Probably have non-zero.
Search for Solar Axions: CAST Biljana Lakić IRB Zagreb, TU Darmstadt for the CAST collaboration 2004 LHC DAYS IN SPLIT, 5 – 9 October 2004 LHC DAYS IN.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
P. Gorodetzky PCC-Collège de France XIII ISVHECRI Pylos September NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from.
I. Giomataris Large TPCs for low energy rare event detection NNN05 Next Generation of Nucleon Decay and Neutrino Detectors 7-9 April 2005 Aussois, Savoie,
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
0 American Physical Society MultiDivisional Neutrino Study DOE-OS Briefing January 7, 2005 Washington DC Stuart Freedman Boris Kayser.
Prospects for the detection of sterile neutrinos with KATRIN-like experiments Anna Sejersen Riis, Steen Hannestad “Detecting sterile neutrinos with KATRIN.
1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
0 Physics of Neutrinos From Boris Kayser, Fermilab.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Monday, Feb. 24, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #11 Monday, Feb. 24, 2003 Dr. Jae Yu 1.Brief Review of sin 2  W measurement 2.Neutrino.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 11,
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Neutrinos September PDG advisory committee Maury Goodman for The neutrino group.
Search for Solar Axions: the CAST experiment at CERN Berta Beltrán (University of Zaragoza,
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
Search for Sterile Neutrino Oscillations with MiniBooNE
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
March 7, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Michel Gonin – Ecole Polytechnique – France : SUPER NOVA SN1987A Super-Kamiokande Introduction neutrino oscillations mixing matrices Introduction.
Search for Solar Axions with the CAST experiment J. Galán on behalf of the CAST Collaboration University of Zaragoza (Spain) 8/Oct/2009J.Galán11th ICATPP.
Birth of Neutrino Astrophysics
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
Neutrino oscillations with radioactive sources and large detectors Wladyslaw H. Trzaska on behalf of: Yu.N. Novikov, T. Enqvist, A.N. Erykalov, F. v.Feilitzsch,
Neutrino physics: The future Gabriela Barenboim TAU04.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
New Results from MINOS Matthew Strait University of Minnesota for the MINOS collaboration Phenomenology 2010 Symposium 11 May 2010.
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Neutrinos and the Evolution
Sterile Neutrinos and WDM
The Physics of Neutrinos
Solar Neutrino Problem
Neutrino oscillation physics
Finish neutrino Physics
Presentation transcript:

EESFYE, Patras April 14-16/2011 Fancy Neutrino Oscillometry-on Settling the Reactor Neutrino Anomaly) (LOW ENERGY NEUTRINOS IN A BO X) J.D. Vergados*, Y. Giomataris* and Yu.N. Novikov *for the NOSTOS Collaboration: Saclay, APC-Paris, Saragoza, Ioannina, Thessaloniki, Dimokritos, Dortmund, Sheffield

EESFYE, Patras April 14-16/2011 NOSTOS: SPHERICAL TPC’s (STPC) for detecting Earth or sky neutrinos A) LOW ENERGY NEUTRINOS IN A SPHERICAL BOX A) LOW ENERGY NEUTRINOS IN A SPHERICAL BOX ( electron recoils from low energy neutrinos) ( electron recoils from low energy neutrinos) B) Neutral Current Spherical TPC’s B) Neutral Current Spherical TPC’s (nuclear recoils) (nuclear recoils) B1: For Dedicated SUPERNOVA NEUTRINO DETECTION B1: For Dedicated SUPERNOVA NEUTRINO DETECTION B2: For exotic neutrino Oscillometry (Reactor Neutrino B2: For exotic neutrino Oscillometry (Reactor Neutrino Anomaly) Anomaly)

EESFYE, Patras April 14-16/2011 NEUTRINO OSCILLATIONS Neutrino mass terms 1. Dirac +(heavy neutrino) Majorana type or 2. Light neutrino Majorana type Result in all cases: Neutrino mixing

EESFYE, Patras April 14-16/2011 Standard Parameterization of Mixing Matrix (2 Majorana phases not shown)

The mixing matrix is called PNMS (Pontecorvo–Maki–Nakagawa–Sakata matrix). It has not yet been derived from a basic theory. From neutrino oscillations we know that, unlike the C-M matrix for quarks, it has large off diagonal elements. Some models yield “bi-tri maximal” form consistent with ν-oscillations, i.e. Pontecorvo–Maki–Nakagawa–Sakata matrixPontecorvo–Maki–Nakagawa–Sakata matrix EESFYE, Patras April 14-16/2011

Massive Neutrinos Oscillate! Flavor states: ν α, α=e,μ,τ. Flavor states: ν α, α=e,μ,τ. Mass eigenstates: : ν i, i=1,2,3 Mass eigenstates: : ν i, i=1,2,3 Flavor α at time t=0, ν α =Σ ι U αj ν j Flavor α at time t=0, ν α =Σ ι U αj ν j Flavor α at a later time t#0, ν α =Σ ι U αj ν j exp(iE j t) Flavor α at a later time t#0, ν α =Σ ι U αj ν j exp(iE j t) P(ν α ->ν β ) =Σ j (U βj )* U αj exp(iE j t ) #δ αβ P(ν α ->ν β ) =Σ j (U βj )* U αj exp(iE j t ) #δ αβ

Neutrino Oscillations (two ν types) L=ct, L 0 =oscillation length period Mixing matrix Mixing matrix Q.M. Evolution Equation Q.M. Evolution Equation EESFYE, Patras April 14-16/2011

Neutrino Oscillation Experiments Effectively analyzed as two generations Appearance Appearance P(ν α -> ν β, α≠β)=sin 2 2θ sin 2 π(L/L 0 ) P(ν α -> ν β, α≠β)=sin 2 2θ sin 2 π(L/L 0 ) Disappearance Disappearance P(ν α -> ν α )=1-sin 2 2θ sin 2 π(L/L 0 ) P(ν α -> ν α )=1-sin 2 2θ sin 2 π(L/L 0 ) θ the effective mixing angle θ the effective mixing angle L 0 the oscillation Length =(4πE ν )/Δm 2 or L 0 the oscillation Length =(4πE ν )/Δm 2 or L 0 =2.476km {E ν /1MeV}/{Δm 2 /10 -3 eV 2 }= L 0 =2.476km {E ν /1MeV}/{Δm 2 /10 -3 eV 2 }= 2.476m {E ν /1keV}/{Δm 2 /10 -3 eV 2 } 2.476m {E ν /1keV}/{Δm 2 /10 -3 eV 2 } L is the source detector distance L is the source detector distance

Two generation Oscillations θ=π/4 (atmospheric), θ=π/5 (solar) EESFYE, Patras April 14-16/2011

Table I: Best fit values from global data (solar, atmospheric, reactor (KamLand and CHOOZE) and K2K experiments)

EESFYE, Patras April 14-16/2011 In (ν e,e) detector all flavors contribute σ e (Ε ν,L)= σ(Ε ν,0) P(Ε ν,ν e -->ν e ) σ e (Ε ν,0) is the standard electron neutrino cross section in the absence of oscillation. σ e (Ε ν,0) is the standard electron neutrino cross section in the absence of oscillation. The 3-generation oscillation probability (after integration over the electron energies ) will appear as: The 3-generation oscillation probability (after integration over the electron energies ) will appear as: P(ν e ->ν e )≈1- χ(Ε ν ) P(ν e ->ν e )≈1- χ(Ε ν ) {sin 2 (2θ 12 ) sin 2 [π(L\L 12 )]+ {sin 2 (2θ 12 ) sin 2 [π(L\L 12 )]+ sin 2 (2θ 13 ) sin 2 [π(L\L 13 )]}, L 13 = L 23 sin 2 (2θ 13 ) sin 2 [π(L\L 13 )]}, L 13 = L 23

The ν e disappearance probability E ν =13keV, θ 12 =π/5, sin 2 2θ 13 =0.175,0.085,0.045 Detector close to the source Detector far from the source EESFYE, Patras April 14-16/2011

More Exotic Neutrino Oscillation Experiments to extract more precise Neutrino Oscillation Parameters Very low energy neutrinos  small oscillation lengths The full oscillation takes place inside the detector (many standard experiments simultaneously) Due to thresholds available are only: neutrino electron and neutral current scattering are open EESFYE, Patras April 14-16/2011

The NOSTOS Set Up (the position is determined via a radial Electric field) The detector The neutrino source EESFYE, Patras April 14-16/2011

The famous “sphere” EESFYE, Patras April 14-16/2011

The number of events for a spherical gaseous detector (source at the origin) EESFYE, Patras April 14-16/2011

Part I (ν e, e) scattering For measuring For measuring EESFYE, Patras April 14-16/2011 sin 2 (2θ 13 ) and δm 2 13

Some sources of low energy Monoenergetic Neutrinos for mesuring sin 2 (2θ 13 ) and δm 2 13 EESFYE, Patras April 14-16/2011

Event rate dN/dL(per m), P=10Atm, Ar target for m=0.2 and 0.3 kg of source sin 2 2θ 13 =0.175,0.085,0.045 T th =0.1keV L=10m, E ν =9.8 keV ( 157 Tb) L=50m, E ν =50 keV ( 193 Pt) Neutrino20010 Athens 19/06/10 L->m

Part II: (ν e, e) scattering for oscillations to a Sterile Neutrino measuring* sin 2 (2θ 14 ) and δm 2 14 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 *Now δm 2 is larger ->The optimal ν-energy can be larger *Now δm 2 is larger ->The optimal ν-energy can be larger EESFYE, Patras April 14-16/2011

Sterile neutrinos in (ν e,e) detector σ tot (Ε ν,L)= σ(Ε ν,0) P(Ε ν ;ν e -->ν e )

Some sources (0.1 kg) of low energy Monoenergetic Neutrinos for meαsuring sin 2 (2θ 14 ) and δm 2 14 (electron recoils) To check the Reactor neutrino anomaly sin 2 (2θ 14 )= 0.17± 0.01, δm 2 14 ≈1.5 eV 2 EESFYE, Patras April 14-16/2011

Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =747 keV; full, dotted, dashed curve  sin 2 (2θ 14 )=0.27,0.17,0.07 Oscillation Pattern (10d) Expected Spectra (55d) EESFYE, Patras April 14-16/2011

Determination of θ 14 by 40 Ar (ν e,e) detector: sin 2 (2θ 14 )=0.05 (99%) The total number of events: The total number of events: N 0 =A+B sin 2 (2θ 14 ) N 0 =A+B sin 2 (2θ 14 ) For 51 Cr (measuring for 55 days): For 51 Cr (measuring for 55 days): A=1.59x10 4, B=-7.56x10 4 A=1.59x10 4, B=-7.56x10 4 EESFYE, Patras April 14-16/2011

Part III: Neutral Current detectors* for oscillations to a Sterile Neutrino measuring sin 2 (2θ 14 ) and δm 2 14 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Now δm 2 is larger ->The optimal ν-energy can be larger Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Now δm 2 is larger ->The optimal ν-energy can be larger *Expect large cross sections due to the N 2 dependence instead of Z for (ν e, e) *Expect large cross sections due to the N 2 dependence instead of Z for (ν e, e) EESFYE, Patras April 14-16/2011

Neutrino oscillations with NC interactions? EESFYE, Patras April 14-16/2011

Some sources (0.1 kg) of low energy Monoenergetic Neutrinos for meαsuring sin 2 (2θ 14 ) and δm 2 14 (nuclear recoils) To check the Reactor neutrino anomaly sin 2 (2θ 14 )= 0.17± 0.01, δm 2 14 ≈1.5 eV 2 EESFYE, Patras April 14-16/2011

Unexpected snug: Threshold effect kills the benefit of large N 2 (large σ) Large mass  Small recoil energy EESFYE, Patras April 14-16/2011

Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =1343 keV; (NC) full, dotted, dashed curve  sin 2 (2θ 14 )=0.27,0.17,0.07 Oscillation Pattern Expected Spectra EESFYE, Patras April 14-16/2011

Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =1343 keV; (NC) full, dotted, dashed curve  sin 2 (2θ 14 )=0.27,0.17,0.07 source: 65 Zn; target 20 Ne source: 65 Zn; target 20 Ne source: 65 Zn; target 4 He source: 65 Zn; target 4 He EESFYE, Patras April 14-16/2011

Sterile neutrino oscillations: R 0 =4m,P=10 Atm Antineutrino (continuous) source ; (NC) NC cross section (no oscillation) NC cross section (no oscillation) Source spectrum EESFYE, Patras April 14-16/2011

Sterile neutrino oscillations: R 0 =4m,P=10 Atm Antineutrino (continuous) source ; (NC) full, dotted, dashed curve  sin 2 (2θ 14 )=0.27,0.17,0.07 source: 32 P; target 40 Ar source: 32 P; target 40 Ar source: 32 P; target 20 Ne source: 32 P; target 20 Ne EESFYE, Patras April 14-16/2011

Determination of θ 14 by NC 20 Ne detector: sin 2 (2θ 14 )=0.1 (99%) The total number of events: The total number of events: N 0 =A+B sin 2 (2θ 14 ) N 0 =A+B sin 2 (2θ 14 ) For 65 Zn (measuring for 50 days): For 65 Zn (measuring for 50 days): A=5.3 x10 2, B=-2.8x10 2 A=5.3 x10 2, B=-2.8x10 2 EESFYE, Patras April 14-16/2011

Conclusions A (neutrino oscillations): The discovery of neutrino oscillations gave neutrino physics and astrophysics a new momentum. The discovery of neutrino oscillations gave neutrino physics and astrophysics a new momentum. The two mass square differences, except for a sign, are known The two mass square differences, except for a sign, are known The mixing angles θ 12 and θ 23 are understood. The mixing angles θ 12 and θ 23 are understood. The angle θ 13 and the phase δ 13 are unknown. The angle θ 13 and the phase δ 13 are unknown. Neutrino Oscillations like double CHOOZE and NOSTOS may help in determining the neutrino oscillation parameters, including θ 13, more precisely. Neutrino Oscillations like double CHOOZE and NOSTOS may help in determining the neutrino oscillation parameters, including θ 13, more precisely. The Reactor Neutrino Anomaly implies a fourth (sterile?) neutrino. Neutrino oscillometry with the gaseous STPC detector (nostos) is ideally suited to resolve this issue The Reactor Neutrino Anomaly implies a fourth (sterile?) neutrino. Neutrino oscillometry with the gaseous STPC detector (nostos) is ideally suited to resolve this issue

Questions that cannot be answered by neutrino oscillations: The mass scale and the sign of Δm 2 31 (normal vs inverted hierarchy or almost degenerate scenario) EESFYE, Patras April 14-16/2011

Conclusions B (involving neutrinos) The absolute scale of neutrino mass is still elusive. The combination neutrinoless double beta decay, triton decay, astrophysics may provide the answer We do not know whether the neutrinos are Dirac or Majorana type particles (only neutrinoless double beta decay can settle this issue) We do not know whether the neutrinos are Dirac or Majorana type particles (only neutrinoless double beta decay can settle this issue) Neutrinos may be the best probes for studying the deep sky and the interior of dense objects, like supernovae. A network of cheap easily maintainable and robust STPC detectors maybe a useful in supernova neutrino detection. Neutrinos may be the best probes for studying the deep sky and the interior of dense objects, like supernovae. A network of cheap easily maintainable and robust STPC detectors maybe a useful in supernova neutrino detection. Shall we ever see the neutrino background radiation? Will we see it before the gravitational background radiation? Shall we ever see the neutrino background radiation? Will we see it before the gravitational background radiation? EESFYE, Patras April 14-16/2011

THE END THE END EESFYE, Patras April 14-16/2011

The standard (ν,e) cross section ( In the absence of neutrino oscillations) EESFYE, Patras April 14-16/2011

II: Measure the Weinberg angle at very low momentum transfers

EESFYE, Patras April 14-16/2011 III : At low neutrino energies: The EM interaction competes with the weak With μ ν the neutrino magnetic moment and ξ 1 ≈0.25 With μ ν the neutrino magnetic moment and ξ 1 ≈0.25 Thus we can obtain the limit: μ ν ≤ μ Β Thus we can obtain the limit: μ ν ≤ μ Β (present limit: μ ν ≤ μ Β ) (present limit: μ ν ≤ μ Β )

EESFYE, Patras April 14-16/2011 Simulations: sin 2 (2θ 13 )=0.170 (left), sin 2 (2θ 13 )=0.085 (right)

Current Limits EESFYE, Patras April 14-16/2011

Neutrino mass terms- Dirac mass term M D

EESFYE, Patras April 14-16/2011 Neutrino mass terms- Majorana mass terms M ν & M Ν

EESFYE, Patras April 14-16/2011 Generic Models of neutrino mass – See-saw

EESFYE, Patras April 14-16/2011 Majorana neutrino mass

EESFYE, Patras April 14-16/2011 The Mass Hierarchies - Flavor Content

EESFYE, Patras April 14-16/2011 (1):Astrophysics Mass Limit Σ k m k = m astro =0.71eV (1):Astrophysics Mass Limit Σ k m k = m astro =0.71eV

EESFYE, Patras April 14-16/2011 Astrophysics bound: 0.71 eV, Log(0.71)=-0.15 black  Σm k, green  m 3 green  m 1 dotted  m 1, red  m 2 dotted  m 3, red  m 2

EESFYE, Patras April 14-16/2011 (2): Triton decay mass limit m decay =2.2eV (2): Triton decay mass limit m decay =2.2eV

EESFYE, Patras April 14-16/2011 Triton decay limit: m decay =2.2eV, Log(2.2)=0.34 KATRIN  0.2 eV, Log(0.2)=-0.7; Black  m decay (m 1 ), green  m 3 m 1 ≈ m 2 ≈ m decay dotted  m 1, red  m 2 dotted  m 3,

EESFYE, Patras April 14-16/2011 Majorana Mass Mechanism (ν) c =e iφ ν, φ=α κ (Majorana condition)

EESFYE, Patras April 14-16/2011 Effective neutrino mass encountered in 0ν ββ-decay [α=α 2 -α 1, β=α 3 -α 1 +2δ 13, α1, α 2, α 3 Majorana phases] Mass scale: m 1 (normal); m 3 (inverted)

lower m ee bound from 0ν ββ-decay (From J Valle) Normal hierarchy Inverted lower m ee bound from 0ν ββ-decay (From J Valle) Normal hierarchy Inverted EESFYE, Patras April 14-16/2011

The (ν,e) scattering cross section EESFYE, Patras April 14-16/2011

Minimal set of Neutrino Parameters EESFYE, Patras April 14-16/2011

CAST:Another “Greek” Collaboration Probing eV-scale axions with CAST Probing eV-scale axions with CAST Probing eV-scale axions with CAST Probing eV-scale axions with CAST E. Arik, S. Aune, D. Autiero, K. Barth, A. Belov, B. Beltrán, S. Borghi, G. Bourlis, F.S. Boydag, H. Bräuninger, J.M. Carmona, S. Cebrián, S.A. Cetin, J.I. Collar, T. Dafni, M. Davenport, L. Di Lella, O.B. Dogan, C. Eleftheriadis, N. Elias, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, P. Friedrich, J. Franz, J. Galán, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, R. Hartmann, M. Hasinoff, F.H. Heinsius, I. Hikmet, D.H.H. Hoffmann, I.G. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, K. Königsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, C. Lasseur, A. Liolios, A. Ljubičić, G. Lutz, G. Luzón, D. Miller, J. Morales, T. Niinikoski, A. Nordt, A. Ortiz, T. Papaevangelou, M.J. Pivovaroff, A. Placci, G. Raffelt, H. Riege, A. Rodríguez, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, R. Soufli, L. Stewart, K. van Bibber, J. Villar, J. Vogel, L. Walckiers and K. Zioutas E. Arik, S. Aune, D. Autiero, K. Barth, A. Belov, B. Beltrán, S. Borghi, G. Bourlis, F.S. Boydag, H. Bräuninger, J.M. Carmona, S. Cebrián, S.A. Cetin, J.I. Collar, T. Dafni, M. Davenport, L. Di Lella, O.B. Dogan, C. Eleftheriadis, N. Elias, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, P. Friedrich, J. Franz, J. Galán, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, R. Hartmann, M. Hasinoff, F.H. Heinsius, I. Hikmet, D.H.H. Hoffmann, I.G. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, K. Königsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, C. Lasseur, A. Liolios, A. Ljubičić, G. Lutz, G. Luzón, D. Miller, J. Morales, T. Niinikoski, A. Nordt, A. Ortiz, T. Papaevangelou, M.J. Pivovaroff, A. Placci, G. Raffelt, H. Riege, A. Rodríguez, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, R. Soufli, L. Stewart, K. van Bibber, J. Villar, J. Vogel, L. Walckiers and K. Zioutas E. Arik S. Aune D. Autiero K. Barth A. Belov B. Beltrán S. Borghi G. Bourlis F.S. Boydag H. Bräuninger J.M. Carmona S. Cebrián S.A. CetinJ.I. Collar T. Dafni M. Davenport L. Di Lella O.B. Dogan C. Eleftheriadis N. Elias G. Fanourakis E. Ferrer-Ribas H. Fischer P. Friedrich J. Franz J. Galán T. Geralis I. Giomataris S. Gninenko H. Gómez R. Hartmann M. Hasinoff F.H. Heinsius I. Hikmet D.H.H. Hoffmann I.G. Irastorza J. Jacoby K. Jakovčić D. Kang K. KönigsmannR. Kotthaus M. Krčmar K. Kousouris M. Kuster B. Lakić C. Lasseur A. Liolios A. Ljubičić G. Lutz G. Luzón D. Miller J. Morales T. Niinikoski A. Nordt A. Ortiz T. Papaevangelou M.J. Pivovaroff A. PlacciG. Raffelt H. Riege A. Rodríguez J. Ruz I. Savvidis Y. Semertzidis P. Serpico R. Soufli L. Stewart K. van Bibber J. Villar J. Vogel L. Walckiers K. Zioutas E. Arik S. Aune D. Autiero K. Barth A. Belov B. Beltrán S. Borghi G. Bourlis F.S. Boydag H. Bräuninger J.M. Carmona S. Cebrián S.A. CetinJ.I. Collar T. Dafni M. Davenport L. Di Lella O.B. Dogan C. Eleftheriadis N. Elias G. Fanourakis E. Ferrer-Ribas H. Fischer P. Friedrich J. Franz J. Galán T. Geralis I. Giomataris S. Gninenko H. Gómez R. Hartmann M. Hasinoff F.H. Heinsius I. Hikmet D.H.H. Hoffmann I.G. Irastorza J. Jacoby K. Jakovčić D. Kang K. KönigsmannR. Kotthaus M. Krčmar K. Kousouris M. Kuster B. Lakić C. Lasseur A. Liolios A. Ljubičić G. Lutz G. Luzón D. Miller J. Morales T. Niinikoski A. Nordt A. Ortiz T. Papaevangelou M.J. Pivovaroff A. PlacciG. Raffelt H. Riege A. Rodríguez J. Ruz I. Savvidis Y. Semertzidis P. Serpico R. Soufli L. Stewart K. van Bibber J. Villar J. Vogel L. Walckiers K. Zioutas JCAP02(2009)008 doi: / /2009/02/008 JCAP02(2009)008 doi: / /2009/02/ / /2009/02/008 EESFYE, Patras April 14-16/2011