Ryohei Fukuda 1, Motoaki Saruwatari 1, Masa-aki Hashimoto 1, Shin-ichiro Fujimoto 2 1 Department of Physics, Kyushu University, Fukuoka 2 Department of.

Slides:



Advertisements
Similar presentations
NUCLEOSYNTHESIS, THE R- PROCESS, ABUNDANCES AND JIM TRURAN J. J. COWAN University of Oklahoma JINA Frontiers 2010 : Workshop on Nuclear Astrophysics Yerkes.
Advertisements

The r-Process Nearly four decades have passed since the r-process was postulated. The nature of the distribution of heavy elements in the solar system.
‘Dark Side’ The ‘Dark Side’ of Gamma-Ray Bursts and Implications for Nucleosynthesis neutron capture elements (‘n-process’) light elements (spallation?)
Nucleosynthesis Elements are made in four distinct ways (plus another we didn’t go into)  Big Bang Nucleosynthesis  takes place when the universe is.
New Frontiers in Nuclear and Particle Astrophysics: Time varying quarks MHD Jets Neutrino Mass Hierarchy G. J. Mathews – UND OMEG5-I Nov. 18, 2011 NAOJ,
Stellar Nucleosynthesis
GEOL3045: Planetary Geology Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis.
Introduction to nuclear physics Hal. Nucleosynthesis Stable nuclei.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Evidence for Explosive Nucleosynthesis in the Helium Shell of Massive Stars from Cosmochemical Samples Bradley S. Meyer Clemson University.
Lecture 2 (cont’d): In the Beginning: Origins of the Elements 1.The Periodic Table: elements and isotopes 2.Synthesis of elements in the Early Universe.
The massive zero metal stars: their evolutionary properties and their explosive yields. Alessandro Chieffi Istituto Nazionale di AstroFisica (Istituto.
Yutaka Komiya ( Tokyo Univ., RESCEU ) Collaborators Takuma Suda ( Tokyo Univ., RESCEU ) Shimako Yamada ( Hokkaido Univ. ) Masayuki Y. Fujimoto ( Hokkaido.
Core Course Science A-54: Life as a Planetary Phenomenon.
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in fully Relativistic Approach Nuclear Matter ⇒ RMF Approach Different Mean-Field for p,
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
Nature’s Recipe for Nuclear Matter Atoms for Peace + 50 Conference October 22, 2003 James Symons Lawrence Berkeley National Laboratory.
Supernovae, Nucleosynthesis, and Constraints on Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and.
1 Explosive nucleosynthesis in neutrino-driven, aspherical Pop. III supernovae Shin-ichiro Fujimoto (Kumamoto NCT, Japan) collaboration with M. Hashimoto.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
The FAIR Chance for Nuclear Astrophysics Elemental Abundances Core-collapse Supernovae The neutrino process The r-process nuclei in -Wind Neutron Stars.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Creation of the Chemical Elements By Dr. Harold Williams of Montgomery College Planetarium
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Neutrino reactions on two-nucleon system and core-collapse supernova
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Моделирование магниторотационных процессов в коллапсирующих сверхновых и развитие Магнито-Дифференциально- Ротационной неустойчивости Сергей Моисеенко,
Lecture 15 Explosive Nucleosynthesis and the r-Process.
1/15 The r-Process in the High- Entropy-Wind of Type II SNe K. Farouqi Inst. für Kernchemie Univ. Mainz, Germany Frontiers Workshop August
Image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono.
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Two types of supernovae
Galactic Evolution Workshop NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through.
DOE/SciDAC Supernova Science Center (SNSC) S. Woosley (UCSC), A. Burrows (UA), C. Fryer (LANL), R. Hoffman (LLNL)+ 20 researchers.
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Selected Topics in Astrophysics
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
The First Cosmic Explosions Daniel Whalen McWilliams Fellow Carnegie Mellon University Chris Fryer, Lucy Frey LANL Candace Joggerst UCSC/LANL.
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
Development of magneto- differential-rotational instability in magnetorotational supernovae Sergey Moiseenko, Gennady Bisnovatyi-Kogan Space Research Institute,
Astrophysics Experiments at FRIB Dan Bardayan (ORNL)
Regression Testing for CHIMERA Jessica Travierso Austin Peay State University Research Alliance in Math and Science National Center for Computational Sciences,
Waseda univ. Yamada lab. D1 Chinami Kato
Presolar Grains & Meteorites
Projjwal Banerjee (UC Berkeley) with
Star Formation Nucleosynthesis in Stars
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
p-process in SNIa: new perspectives R. Gallino C. Travaglio
Rebecca Surman Union College
Mysterious Abundances in Metal-poor Stars & The ν-p process
Simulation of Core Collapse Supernovae
Theoretical Astrophysics Group
Nucleosynthesis and the origin of the chemical elements
Creation of the Chemical Elements
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
Observations: Cosmic rays
What is nuclear fusion. How is it different to fission?
Nucleosynthesis and the origin of the chemical elements
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Nucleosynthesis in jets from Collapsars
Myung-Ki Cheoun Department of Physics,
Pop III Black-hole-forming supernovae and Abundance pattern of Extremely Metal Poor Stars Hideyuki Umeda (梅田秀之) Dept. of Astronomy Univ.of Tokyo.
爆燃Ia型超新星爆発時に おけるダスト形成
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

Ryohei Fukuda 1, Motoaki Saruwatari 1, Masa-aki Hashimoto 1, Shin-ichiro Fujimoto 2 1 Department of Physics, Kyushu University, Fukuoka 2 Department of Electronic Control, Kumamoto National College of Technology, Kumamoto M. Saruwatari, M. Hashimoto, R. Fukuda and S. Fujimoto, “R-process Nucleosynthesis in MHD Jet Explosions of Core-Collapse Super- novae,” Journal of Astrophysics, vol.2013, Article ID , 13pages, 2013

 r-process ◦ One of the mechanisms to produce the elements heavier than Fe ◦ High entropy or low electron fraction Y e are needed. (Hoffman+1999) ◦ r-abundance pattern of r-process rich low metallicity stars : consistent with the solar one ◦ Sites : supernovae (e.g., Winteler+2012) or neutron star mergers (e.g., Korobkin+2012) Cowan & Sneden 2006

 Nishimura et al ◦ Adiabatic explosion without neutrino effects ◦ R-elements distribution is almost consistent with the solar system abundances. ◦ Neutrino capture processes enhance Y e and reduce the production of r-elements?  Winteler et al ◦ 3D MHD simulation with neutrino effects ◦ Abundant r-elements ◦ Short simulation time  To confirm the possibility of the r-process in SNe, we performed 2D MHD simulation including neutrino effects with longer simulation time

 MHD simulation ◦ ZEUS-2D code (Stone & Norman 1992) ◦ Shen EoS (Shen et al. 1998) ◦ presupernova model : 3.3 M  He core (Hashimoto 1995) ◦ 0 < r < 4000 km, 0 < θ < π/2 (300 (r )×30 (θ ) grid) which covers the Fe core and inner part of Si- rich layer ◦ Including neutrino effects (leakage scheme)  Nucleosynthesis calculation ◦ ~4000 nuclear species ◦ FRDM & ETFSI mass model

Model Model Model ×10 12 Model ×10 13 Model ×10 13 Model ×10 13

Model Model Model Model Model Model ×10 -3 Model 5 produces jet like explosion. Only third peak is reproduced.

 We performed 2D MHD simulation of magnetorotationally driven SNe with neutrino effects using the leakage scheme.  Strong jet-like explosions are obtained in model 5.  We calculate nucelosynthesis inside the ejecta including the r-process.  The third peak is reproduced by model 5.  Supernova explosions cannot be excluded as a site of the r-process.