Supplementary material. Supplementary Figure 1. – Total phenolic content before and after the fining experiments in 250ml bottles, for the three types.

Slides:



Advertisements
Similar presentations
Monitoring Acids and pH in Winemaking
Advertisements

COMENIUS EUROPEAN PROJECT IPSIA “Emilio Cavazza” - POMEZIA ALCOHOLIC FERMENTATION.
Determination of the Isoelectric Points of Casein
NITROGEN TRIALS AND AROMA PRODUCTION Linda F. Bisson Department of Viticulture and Enology UC Davis April 18, 2014.
University of Minho School of Engineering Centre of Biological Engineering Uma Escola a Reinventar o Futuro – Semana da Escola de Engenharia - 24 a 27.
The Japanese Wine Regulatory System National Research Institute of Brewing, Japan Nami Goto-Yamamoto 1.
WHITE WINE CLARIFICATION BY A NEW HYBRID PROCESS
High Alcohol Wines: How to Manage Primary and Secondary Fermentation Presented by: Jessica Just of Scott Laboratories and Sigrid Gertsen-Briand of Lallemand.
Invitation in Fining Agents UC Davis 7 th June 2013.
Group#3, UG-5. Wine  Wine is an alcoholic beverage made from the fermentation of grape juice.  Yeast (Saccharomyces cerevisiae) is mostly used for fermentation.
Signe Zoller Zoller Wine Consulting MAXIMIZING AROMAS/ BALANCING FINISH.
Oxygen Treatments Pre- and During Fermentation Linda F. Bisson Department of Viticulture and Enology University of California, Davis.
P449. p450 Figure 15-1 p451 Figure 15-2 p453 Figure 15-2a p453.
University of Minho School of Engineering Department of Biological Engineering Uma Escola a Reinventar o Futuro – Semana da Escola de Engenharia - 24 a.
Lecture 5: Juice and Must Treatments and Additions.
Innovations in Fining UC Davis, June 7th 2013 José Santos President.
The Fundamentals of Fining Linda F. Bisson Department of Viticulture and Enology, UCD.
STRESS IN VINE AND WINE Johannes Reinhardt Anthony Road Wine Co 33 rd Annual New York Wine Industry Workshop 31 March, 1-2 April 2004.
Fat and oil.
Fermentation (anaerobic respiration). Fermentation Breaking down carbohydrates an the Absence of oxygen to gain energy. Used by both unicellular and multicellular.
Inactivation of Wine Spoilage Yeasts Dekkera bruxellensis Using Low Electric Current Treatment(LEC ) Kenneth, Eriko, Zach, Jihee.
Winemaking in the Classroom 3 Clarification, Finishing and Bottling Sirromet Wines Pty Ltd Mount Cotton Rd Mount Cotton Queensland, Australia 4165.
ANAEROBIC RESPIRATION A type of cellular respiration.
Figure S1 Figure S1. Modular structure of rice proteins encompassing the SPX domain. Different colors indicate the amino acid ranges of the domains. Purple,
Good Microbes Fermentation Process. Goal of Metabolism Utilize food (sugars) in order to store energy in the form of ATP. Differences between prokaryotes.
1. How many grams of sucrose (Mr 342) would you need in order to make 500 mL of a 5 mM solution? 2. Assume a 36% (w/w) solution of protein (Mr )
Winemaking. Ajarn Dr. Charoen Charoenchai (PhD Food Sci & Tech, UNSW) Faculty of Home Economics Technology Rajamangala Uni of Technology Thanyaburi Ph.
Wine and Alcoholic Fermentation (I). Wine Fermentation  Grape cultivation and wine making from Zagros Mountains and Caucasus region of Asia from 6000.
1 PEAR SPIRITS DEVELOPMENT Thesis Project Course PhD Programme Universitat Rovira i Virgili Tarragona, SpainStudent: Laura García Llobodanin Supervisor:
Wine making and malolactic fermentation Son hong-seok.
min 30 min 45 min 60 min KDa Figure S1. SDS-PAGE of supernatant after incubation in digestion buffer. L. monocytogenes.
Oxidative Phosphorylation & Fermentation
Production, Optimization and Characterization of Wine from Pineapple (Ananas comosus Linn.) ASSOCIATE PROFESSOR DEPARTMENT OF BOTANY THE AMERICAN COLLEGE.
Analysis of fruit juices_2. Determination of saccharin Objective: To determine the amount of saccharine which may be added to fruit juice Introduction.
Optimizing the Sustainability of Winery Processing Blending Innovative Technology with Unparalleled Service Fining and Filtration Strategies to Reduce.
Must And Wine Composition. General Background The weight % of the grape component parts of a cluster The general weight composition of the juice.
The Suitability of L. cv. Pinot noir Mariafeld for Sparkling Wine Production in Niagara, Ontario Esther Onguta, Lisa Dowling, Belinda Kemp, Jim Willwerth,
Small Scale Winemaking How to make wine in the classroom.
Impact of Oxygen and Hydrogen Peroxide Treatments on Torrontes Aroma Profiles Linda F. Bisson Department of Viticulture and Enology University of California,
Protein lysis chapter 27 Page 207 Bacteria: Medium: Escherichia coli
A 20.0 mL sample of M lactic acid (HC 3 H 5 O 3 -- a monoprotic acid) Ka = 1.4E-4 is titrated with M KOH. Calculate the volume of KOH needed.
The winemaking process, from vine to wine
Nwabisa N. Mehlomakulu, Mathabatha E. Setati and Benoit Divol
Figure S1. A B C Survival probability (%) P = 0.21 P = 0.37 P = 0.12
Table 1. Change in parameters during fermentation in Hydrolysate A
Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard Teresa Garde-Cerdána,
Chardonnay Press Fraction Trial
Monitoring the impact of pectolytic enzymes on autolysis characters in sparkling wine during bottle ageing Neil Scrimgeour 1, Alana Seabrook 2, Eric Wilkes.
Nutrient Type and timing for low-pH base wines during yeast acclimatization and tirage in sparkling wine production Jessy Plante, Belinda Kemp, Esther.
Clean fuel generation from agro-waste by a novel isolate IODB-O3
Role of yeast in chocolate production: The initial anaerobic, low ph and high sugar conditions of the pulp favor yeast activity.
Cellular Respiration, Photosynthesis or Seed Germination
Applied and Industrial Microbiology
אנליטיקאית מו"פ – טבע תעשיות פרמצבטיות
CHARACTERISTIC PROPERties
Anaerobic respiration
Acid stability of the HA protein of clade
Bioconversion of Whey to Lactic Acid Using Lactic Acid Bacteria (LAB)
(a) (b) FhGALE M U I S W1 W2 E1 E2 E3 M - +
Lightly sparkling Wine
University of Agronomic Sciences and Veterinary Medicine of Bucharest
University of Agronomic Sciences and Veterinary Medicine of Bucharest
Plk1 negatively regulates cortical localization of dynein, NuMA, and LGN during metaphase. Plk1 negatively regulates cortical localization of dynein, NuMA,
2015 State Convention Focus Tables.
A, ATP production by PC3 prostate cancer cells after treatment with oligonucleotide/Lipofectin complexes. a, ATP production by PC3 prostate cancer cells.
Bioenergy-Fermentation
Ki-67 expression in M31- and H3-treated tumors (A) and respective Ki-67 labeling indices in the two groups of tumors (B). Ki-67 expression in M31- and.
Sugar Free Extract and the Impact of Sugar Analysis
Number of treatments ____________________________________________
SDS-PAGE and Coomassie Blue Staining of Protein Samples after Various Purification Steps of Both Rice and Barley ADPG Hydrolytic NPPs.Lane numbering of.
Presentation transcript:

Supplementary material

Supplementary Figure 1. – Total phenolic content before and after the fining experiments in 250ml bottles, for the three types of wine tested. Untreated wine: NT. Wines treated with: Yeast protein extracts: BCV1 and BCV5; Bent: Bentonite; Cas: Casein; PVPP: Polyvinylpolypyrrolidon; VP: Vegetable protein. Bars indicate mean ± SD (n = 3).

Supplementary Figure 2. Chromatic characterization using CIELab system: Saturation (C*), Brilliance (L*), Green (-a*) and Yellow (b*) values. Results were obtained before and after treatment of wine 2 with YPE and different fining agents. Two dosages were tested by treatment (Min.-minimum; Max.- maximum).

Supplementary Figure 3. Chromatic characterization using CIELab system: Saturation (C*), Brilliance (L*), Green (-a*) and Yellow (b*) values. Results were obtained before and after treatment of wine 3 with YPE and different fining agents. Two dosages were tested by treatment (Min.-minimum; Max.- maximum).

Wine 1 Density (g/L) Ethanol (% vol) Volatile acidity (g/L H 2 SO 4 ) Tritable acidity (g/L H 2 SO 4 ) pH Glycerol (g/L) Malic Acid (g/L) Lactic Acid (g/L) Total SO 2 (mg/L) Free SO 2 (mg/L) BCV1 10g/hL 987,5 ± 0,213,56 ± 0,170,64 ± 0,057,47 ± 0,053,29 ± 0,016,81 ± 0,050,93 ± 0,021,09 ± 0,01105,1 ± 0,044,9 ± 0,4 20g/hL 987,6 ± 0,313,50 ± 0,150,63 ± 0,027,41 ± 0,013,30 ± 0,056,79 ± 0,010,91 ± 0,011,07 ± 0,00104,3 ± 0,045,2 ± 0,4 BCV5 10g/hL 987,5 ± 0,313,54 ± 0,150,63 ± 0,017,47 ± 0,023,30 ± 0,046,75 ± 0,000,95 ± 0,021,08 ± 0,00103,5 ± 0,245,0 ± 0,3 20g/hL 987,6 ± 0,313,51 ± 0,150,63 ± 0,007,46 ± 0,003,29 ± 0,026,80 ± 0,001,02 ± 0,031,07 ± 0,00105,0 ± 0,045,4 ± 0,5 Bent 10g/hL 987,7 ± 0,513,44 ± 0,150,68 ± 0,017,03 ± 0,103,27 ± 0,016,75 ± 0,020,96 ± 0,061,05 ± 0,01104,7 ± 0,045,8 ± 0,2 60g/hL 988,2 ± 0,213,19 ± 0,160,68 ± 0,027,08 ± 0,033,29 ± 0,016,82 ± 0,031,00 ± 0,011,07 ± 0,01103,6 ± 0,145,1 ± 0,3 Cas 20g/hL 987,8 ± 0,413,34 ± 0,100,70 ± 0,066,83 ± 0,053,28 ± 0,026,93 ± 0,011,12 ± 0,00 105,1 ± 0,544,9 ± 0,2 100g/hL 988,1 ± 0,313,11 ± 0,110,69 ± 0,056,63 ± 0,073,31 ± 0,047,02 ± 0,001,17 ± 0,021,08 ± 0,00103,4 ± 0,145,2 ± 0,1 PVPP 10g/hL 987,9 ± 0,313,47 ± 0,150,68 ± 0,057,43 ± 0,103,28 ± 0,006,87 ± 0,020,89 ± 0,011,12 ± 0,02105,1 ± 0,144,8 ± 0,2 80g/hL 988,0 ± 0,613,31 ± 0,150,68 ± 0,047,28 ± 0,043,28 ± 0,016,82 ± 0,030,90 ± 0,001,08 ± 0,02105,4 ± 0,545,3 ± 0,0 VP 20g/hL 987,9 ± 0,213,47 ± 0,150,68 ± 0,007,39 ± 0,103,28 ± 0,057,01 ± 0,010,91 ± 0,031,10 ± 0,00104,0 ± 0,845,2 ± 0,5 60g/hL 988,0 ± 0,113,38 ± 0,150,68 ± 0,017,32 ± 0,023,30 ± 0,016,85 ± 0,000,91 ± 0,001,08 ± 0,00103,3 ± 0,145,2 ± 0,6 NT 988,3 ± 0,213,04 ± 0,150,70 ± 0,106,69 ± 0,023,31 ± 0,007,21 ± 0,021,22 ± 0,051,05 ± 0,00105,2 ± 0,145,3 ± 0,5 Supplementary Table 1. Conventional oenological parameters acquired by Infrared Fourier-transform spectrometer – Wine 1. Wines treated with: Yeast protein extracts: BCV1 and BCV5; Bent: Bentonite; Cas: Casein; PVPP: Polyvinylpolypyrrolidon; VP: Vegetable protein. Untreated wine: NT. Results are relative to fining experiments after fermentation, performed in triplicates. Values are presented as mean ± SD (n = 3).

Wine 2 Density (g/L) Ethanol (% vol) Volatile acidity (g/L H 2 SO 4 ) Tritable acidity (g/L H 2 SO 4 ) pH Glycerol (g/L) Malic Acid (g/L) Lactic Acid (g/L) Total SO 2 (mg/L) Free SO 2 (mg/L) BCV1 10g/hL 989,8 ± 0,113,32 ± 0,150,60 ± 0,046,53 ± 0,013,40 ± 0,015,81 ± 0,031,15 ± 0,01 0,52 ± 0,02 113,1 ± 0,134,9 ± 0,5 20g/hL 989,8 ± 0,313,27 ± 0,170,60 ± 0,036,51 ± 0,023,40 ± 0,026,03 ± 0,021,19 ± 0,02 0,48 ± 0,04 114,3 ± 0,035,2 ± 0,4 BCV5 10g/hL 989,7 ± 0,113,30 ± 0,150,58 ± 0,006,58 ± 0,073,39 ± 0,016,22 ± 0,031,19 ± 0,01 0,51 ± 0,01 112,5 ± 0,434,0 ± 0,3 20g/hL 989,6 ± 0,113,27 ± 0,110,54 ± 0,056,64 ± 0,033,38 ± 0,046,32 ± 0,051,27 ± 0,03 0,50 ± 0,02 115,0 ± 0,532,0 ± 0,5 Bent 10g/hL 989,1 ± 0,213,20 ± 0,170,60 ± 0,006,64 ± 0,053,35 ± 0,026,21 ± 0,010,98 ± 0,04 0,35 ± 0,03 112,7 ± 0,334,0 ± 0,4 60g/hL 989,3 ± 0,413,02 ± 0,170,60 ± 0,066,44 ± 0,023,37 ± 0,046,05 ± 0,051,04 ± 0,02 0,41 ± 0,02 114,6 ± 0,337,0 ± 0,1 Cas 20g/hL 989,3 ± 0,213,18 ± 0,100,62 ± 0,056,65 ± 0,003,36 ± 0,026,01 ± 0,021,13 ± 0,03 0,29 ± 0,04 117,1 ± 0,335,0 ± 0,1 100g/hL 989,4 ± 0,212,97 ± 0,170,57 ± 0,026,44 ± 0,023,38 ± 0,036,54 ± 0,051,10 ± 0,02 0,27 ± 0,04 112,4 ± 0,435,2 ± 0,2 PVPP 10g/hL 989,9 ± 0,013,29 ± 0,110,59 ± 0,066,64 ± 0,013,36 ± 0,026,80 ± 0,030,87 ± 0,02 0,53 ± 0,00 115,1 ± 0,036,0 ± 0,1 80g/hL 990,0 ± 0,613,10 ± 0,100,58 ± 0,036,51 ± 0,033,36 ± 0,046,52 ± 0,020,90 ± 0,03 0,51 ± 0,00 116,4 ± 0,032,0 ± 0,0 VP 20g/hL 989,9 ± 0,213,26 ± 0,140,59 ± 0,036,60 ± 0,033,36 ± 0,026,69 ± 0,020,90 ± 0,04 0,52 ± 0,01 103,0 ± 0,336,0 ± 0,1 60g/hL 990,0 ± 0,213,20 ± 0,150,59 ± 0,056,50 ± 0,053,37 ± 0,016,65 ± 0,050,92 ± 0,05 0,50 ± 0,01 103,3 ± 0,137,0 ± 0,4 NT 989,3 ± 0,012,96 ± 0,170,53 ± 0,046,49 ± 0,033,36 ± 0,007,02 ± 0,051,20 ± 0,05 0,27 ± 0,00 115,2 ± 0,035,3 ± 0,6 Supplementary Table 2. Conventional oenological parameters acquired by Infrared Fourier-transform spectrometer – Wine 2. Wines treated with: Yeast protein extracts: BCV1 and BCV5; Bent: Bentonite; Cas: Casein; PVPP: Polyvinylpolypyrrolidon; VP: Vegetable protein. Untreated wine: NT. Results are relative to fining experiments after fermentation, performed in triplicates. Values are presented as mean ± SD (n = 3).

Wine 3 Density (g/L) Ethanol (% vol) Volatile acidity (g/L H 2 SO 4 ) Tritable acidity (g/L H 2 SO 4 ) pH Glycerol (g/L) Malic Acid (g/L) Lactic Acid (g/L) Total SO 2 (mg/L) Free SO 2 (mg/L) BCV1 10g/hL 989,4 ± 0,015,60 ± 0,130,86 ± 0,027,69 ± 0,013,33 ± 0,007,21 ± 0,021,31 ± 0,010,75 ± 0,02125,1 ± 0,152,0 ± 0,1 20g/hL 989,5 ± 0,315,53 ± 0,120,85 ± 0,017,63 ± 0,043,34 ± 0,017,23 ± 0,051,34 ± 0,030,73 ± 0,08124,3 ± 0,353,0 ± 0,5 BCV5 10g/hL 989,5 ± 0,415,58 ± 0,180,86 ± 0,007,66 ± 0,013,33 ± 0,007,22 ± 0,021,28 ± 0,000,76 ± 0,05124,5 ± 0,154,0 ± 0,4 20g/hL 989,7 ± 0,115,50 ± 0,160,86 ± 0,027,57 ± 0,053,33 ± 0,027,16 ± 0,001,23 ± 0,000,74 ± 0,00126,0 ± 0,045,4 ± 0,3 Bent 10g/hL 989,7 ± 0,015,48 ± 0,200,95 ± 0,026,97 ± 0,033,32 ± 0,037,11 ± 0,061,12 ± 0,050,52 ± 0,05128,7 ± 0,252,0 ± 0,2 60g/hL 989,7 ± 0,015,23 ± 0,160,93 ± 0,016,68 ± 0,003,34 ± 0,067,10 ± 0,061,07 ± 0,020,47 ± 0,01130,6 ± 0,052,0 ± 0,1 Cas 20g/hL 989,8 ± 0,115,42 ± 0,150,95 ± 0,026,94 ± 0,023,33 ± 0,027,05 ± 0,051,16 ± 0,030,52 ± 0,03122,1 ± 0,150,0 ± 0,0 100g/hL 989,8 ± 0,615,15 ± 0,110,91 ± 0,016,69 ± 0,043,35 ± 0,087,01 ± 0,030,99 ± 0,000,50 ± 0,06123,4 ± 0,251,0 ± 0,2 PVPP 10g/hL 990,1 ± 0,015,43 ± 0,130,91 ± 0,037,58 ± 0,003,33 ± 0,057,13 ± 0,001,03 ± 0,010,78 ± 0,04125,1 ± 0,052,0 ± 0,1 80g/hL 990,1 ± 0,315,33 ± 0,100,91 ± 0,027,50 ± 0,013,35 ± 0,057,14 ± 0,010,99 ± 0,000,74 ± 0,04123,4 ± 0,053,0 ± 0,8 VP 20g/hL 990,2 ± 0,115,39 ± 0,120,91 ± 0,017,64 ± 0,003,33 ± 0,017,05 ± 0,011,07 ± 0,020,77 ± 0,03122,5 ± 0,554,0 ± 0,3 60g/hL 990,3 ± 0,515,14 ± 0,100,90 ± 0,007,51 ± 0,013,33 ± 0,007,11 ± 0,001,05 ± 0,050,73 ± 0,01130,2 ± 0,155,0 ± 0,1 NT 989,8 ± 0,015,49 ± 0,210,89 ± 0,027,64 ± 0,023,32 ± 0,027,56 ± 0,021,04 ± 0,030,78 ± 0,00127,2 ± 0,251,0 ± 0,0 Supplementary Table 3. Conventional oenological parameters acquired by Infrared Fourier-transform spectrometer – Wine 3. Wines treated with: Yeast protein extracts: BCV1 and BCV5; Bent: Bentonite; Cas: Casein; PVPP: Polyvinylpolypyrrolidon; VP: Vegetable protein. Untreated wine: NT. Results are relative to fining experiments after fermentation, performed in triplicates. Values are presented as mean ± SD (n = 3).