M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Sviluppo di sistemi di rivelazione a silicio per imaging con.

Slides:



Advertisements
Similar presentations
Cirrone G. A. P. , Cuttone G. , Raffaele L. , Sabini M. G
Advertisements

Chapter 4 Radiation Dosimeters
Study of plastic scintillators for fast neutron measurements
Ionization Chamber Array for External Beam Radiotherapy
RapidArc plan verification using ArcCHECK™
Chapter 8 Planar Scintigaraphy
Energy deposition and neutron background studies for a low energy proton therapy facility Roxana Rata*, Roger Barlow* * International Institute for Accelerator.
Characterization of primed state of CVD diamond by light and alpha particles C. Manfredotti Experimental Physics Department University of Torino INFN-
Fricke gel dosimeters for the measurement of the anisotropy function of a HDR Ir-192 brachytherapy source Mauro Carrara 1, Stefano Tomatis 1, Giancarlo.
MONTE-CARLO TECHNIQUES APPLIED TO PROTON DOSIMETRY AND RADIATION SAFETY F. Guillaume, G. Rucka, J. Hérault, N. Iborra, P. Chauvel 1 XXXV European Cyclotron.
BME 560 Medical Imaging: X-ray, CT, and Nuclear Methods
Types of Radiation Interactions All or Nothing Many Small There is a finite probability per unit length that the radiation is absorbed. If not, there is.
Vertex2002 pCT: Hartmut F.-W. Sadrozinski, SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski,
Reduced Dose of Proton CT Compared to X-Ray CT in Tissue-Density Variation Sensitivity T. Satogata, T. Bacarian, S. Peggs, A.G. Ruggiero, and F.A. Dilmanian.
Hartmut F.-W. Sadrozinski RESMDD06 Radiography Studies for Proton CT M. Petterson, N. Blumenkrantz, J. Feldt, J. Heimann, D. Lucia, H. F.-W. Sadrozinski,
Interactions of charged particles with the patient I.The depth-dose distribution - How the Bragg Peak comes about - (Thomas Bortfeld) II.The lateral dose.
Measurement of Absorbed Dose (6)
Vertex2002 pCT: Hartmut F.-W. Sadrozinski, SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski,
Beam Test for Proton Computed Tomography PCT
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
At the position d max of maximum energy loss of radiation, the number of secondary ionizations products peaks which in turn maximizes the dose at that.
BIOLOGICAL EFFICIENCY OF A THERAPEUTIC PROTON BEAM: A STUDY OF HUMAN MELANOMA CELL LINE I. Petrović 1, A. Ristić-Fira 1, D. Todorović 1, L. Korićanac 1,
A pixel chamber as beam monitor for IMRT S. Belletti 4, A.Boriano 6, F.Bourhaleb 5,7, R. Cirio 6, M. Donetti 5,6, B. Ghedi 4, E. Madon 2, F. Marchetto.
Beam Therapy Equipment 3 Patient Treatment and Accessories.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
Dose Distribution and Scatter Analysis
Dosimetric evaluation of a new design MOSFET detector Per H. Halvorsen* & Stephanie Parker University of North Carolina.
Michele Togno ARDENT ESR 11 – 2D Ionization Chambers Array for Clinical Applications Michele Togno – ARDENT midterm review preparatory meeting, CERNJune,
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Test of the proposed method Introduction CCD Controller CCD Illuminator gel Filter 585nm Assembling the phantom before its irradiation. The phantom, ready.
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.
Protect, Enhance, and Save Lives III ARDENT Annual Workshop 29/09-02/10/2014 IBA Dosimetry Francesca Bisello ESR 10.
The Magic Cube and the Pixel Ionization Chamber: detectors for monitor and dosimetry of radiotherapy beams S. Amerio 1, A. Boriano 2, F. Bourhaleb 2,3,
M. Scaringella 1, M. Bruzzi 2,3, M. Bucciolini 3,4,10, M. Carpinelli 8,9, G. A. P. Cirrone 5, C. Civinini 3, G. Cuttone 5, D. Lo Presti 6,7, S. Pallotta.
1 Dr. Sandro Sandri (President of Italian Association of Radiation Protection, AIRP) Head, Radiation Protection Laboratory, IRP FUAC Frascati ENEA – Radiation.
Application of a 2-D ionization chamber array for dose verification of dynamic IMRT with a micro-MLC Fujio ARAKI, PhD 1, S. TAJIRI 2, H. TOMINAGA 2, K.
Medical Accelerator F. Foppiano, M.G. Pia, M. Piergentili
APPLICATION TO THE HADROTHERAPY FOR OCULAR MELANOMAS G.A. Pablo Cirrone Qualified Medical Physicist and PhD Student University of Catania and Laboratori.
Araki F. Ikegami T. and Ishidoya T.
AIR CORE SCINTILLATION DOSIMETER SUMMARY We have shown that Cerenkov light can be reduced to a negligible level in scintillation dosimetry by using an.
Determining Radiation Intensity
F. Foppiano, M.G. Pia, M. Piergentili
Francesca Bisello, Prague , IV ARDENT Workshop IV ARDENT Annual Workshop 22-26/06/2015 Prague Francesca Bisello ESR 10.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
T. Lari – INFN Milan Status of ATLAS Pixel Test beam simulation Status of the validation studies with test-beam data of the Geant4 simulation and Pixel.
FrontierScience G.P.1 MATRIX an innovative Pixel Ionization Chamber for Online Monitoring of Hadrontherapy Treatments Giuseppe Pittà.
Implementation of a New Monte Carlo Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the related Dose Distributions.
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
Proton Computed Tomography images with algebraic reconstruction M. Bruzzi 1,2, D. Bonanno 3, M. Brianzi 2, M. Carpinelli 4,9, G.A.P. Cirrone 5, C. Civinini.
1 Fisica Sanitaria, Azienda Ospedaliero-Universitaria Senese, Siena, Italy 2 INFN - Florence Division, Florence, Italy 3 Physics and Astronomy Department,
Commissioning of a commercial treatment planning system for IMAT and Dose Painting treatment delivery. G. Pittomvils 1,,L. Paelinck 1, F. Crop 2, W. De.
Attività WP8: sviluppo sistema dosimetrico INFN Firenze M. Bruzzi, M. Bucciolini, E. Pace, M. Scaringella, C. Talamonti, M. Zani, A. Baldi.
The Effects of Small Field Dosimetry on the Biological Models Used In Evaluating IMRT Dose Distributions Gene Cardarelli,PhD, MPH.
Adapting A Clinical Medical Accelerator For Primary Standard Dosimetry
CONFIDENTIAL MATERIAL Michele Togno - II Annual ARDENT Meeting, Milan – October, 14 th D Ionization Chambers Array for Clinical Applications.
Algebraic reconstruction algorithms applied to proton computed tomography data M. Bruzzi 1,2, M. Brianzi 2, M. Carpinelli 3,9, G.A.P. Cirrone 4, C. Civinini.
1Physics Department, University of Florence, Italy
Dr: Mohamed Afifi By Lecturer Radiological Science
Comparison of GAMMA-400 and Fermi-LAT telescopes
Diagnostics of FRIBs beam transport line
AQUA-ADVANCED QUALITY ASSURANCE FOR CNAO
Absolute Dose Measurement
A Prototype Microstrip Dosimeter for Characterisation of Medical
Proton Computed Tomography system: recent results and upgrade status
Arghya Chattaraj, T. Palani Selvam, D. Datta
Ch 10. A System of Dosimetric Calculations
APPLICATION TO THE HADROTHERAPY FOR OCULAR MELANOMAS
The Hadrontherapy Geant4 advanced example
Computed Tomography (C.T)
Presentation transcript:

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria M. Bucciolini a,b, M. Bruzzi b,c, D. Menichelli b,c, C. Talamonti a,b, M. Brianzi b, L. Marrazzo b,g, S. Pallotta a,b, M. Tesi c, C.Civinini b, G. Candiano f, G. A. P. Cirrone f, G. Cuttone f, D. Lo Presti d,e, N. Randazzo e, V.Sipala d,e a) Dipartimento di Fisiopatologia Clinica, Università degli Studi di Firenze. b) INFN, sezione di Firenze. c) Dipartimento di Energetica, Università degli Studi di Firenze. d) Dipartimento di Fisica, Università degli Studi di Catania. e) INFN, sezione di Catania. f) Laboratori Nazionali del Sud-INFN, Catania. g) Azienda Ospedaliero-Universitaria Careggi, Firenze

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria 1. Proton Computed Tomography Advantages of hadron-therapy with respect to conventional gamma - X ray therapy: i) lower dose to healthy tissues in front of the tumor; ii) healthy tissues beyond the tumor are not damaged; iii) Multiple scattering for protons is small enough that a very sharp dose profile can be maintained. Lateral healthy tissues are not damaged. The stopping power distributions are the main parameters for dose calculation in hadron therapy. They are derived from measured attenuation coefficients μ of conventional XCT But protons and photons interact differently with matters... “The error intrinsic in this conversion (due to m(he,Z) dependency on atomic number and electron density) is the principal cause of proton range indetermination (3%, up to 10 mm in the head).” Schneider U. (1994), Med Phys. 22, 353.

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria INFN V Commission

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria

Projection of the map along y axis. A Gaussian fit of the main component is superimposed to the plot. Number of protons crossing a given x-y position. Position given in terms of strip index (strip pitch is 200  m). Collimator diameter is 5.0mm.  V th =200mV

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Projection of data along y axis. The histogram of events triggered by crystal IV (II) is plotted with a black (red) solid line. Map of events triggered by crystals II (red) and IV (black).  V th =200mV, E=62MeV. The collimator was removed from the beam pipe.

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria 2. Development of a 2D Silicon dosimeter MAESTRO - Integrated Project (VI Framework program) Develop a device adequate for 2D pre-treatment in phantom dose verifications in conformal radiotherapy as photon Intensity Modulated Radio Therapy (IMRT). Accurate determination of the 2D absorbed dose distribution requires detectors with high spatial resolution, a response independent of the dose rate, of the energy, fast, stable in time, with a good linearity, high dynamic range and radiation hardness. TPS IMRT prosthate GTV = gross target volume CTV = clinical target volume = gTV + margini PTV planning target volume = cTV + margini Sezione assiale del corpo

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Geometry of the 441 channels Si module. Silicon segmented sensor, n-type implant on an epitaxial p-type layer. Each element is 2x2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21x21 pixels. Area 6.29x6.29 cm 2. Detector Details of the TERA06 chips and wedge-bonding connections between the printed circuit board and the silicon module.

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Overview of the large scale detector design. Large-Scale Design Details of connection between the kapton flexible circuit (pale green) and central silicon module.

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Radiation Hardness A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with an n + -p junction surrounded by a guard-ring structure implanted on an epitaxial 50  m p-type Si layer grown on a Czochralski substrate. M. Bruzzi, M. Bucciolini, M. Casati, D. Menichelli, C. Talamonti, C. Piemonte, "Epitaxial Si dosimeters for radiotherapy applications," Appl. Phys. Lett., 2007

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Results Almost all the channels exhibit a repeatability < 0.5%, reproducibility < 1% deviation from linearity is 0.3% in the dose range cGy, and the fraction of channels which have a deviation better than 1% is 98% Measurements in the dose rate range cGy/min indicate that there is no dose rate dependence. Mean sensitivity = ± nC/cGy The energy dependence for assessed for different beam quality and TPR were measured at different depths. As expected a slight energy dependence was observed since silicon is not water equivalent

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Profile along the central column for different field size ( 0.8X0.8, 1.6x1.6, 2.4x2.4, 3.2x3.2, 4x4, 4.8x4.8 ) Signal (C) Dose maps Profiles 6MV photon beam at Careggi Hospital

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Depth dose measurements (protons) CATANA: 62 MeV proton beam Measurements in PMMA Signal normalized at 12.5 mm Spread Out Bragg Peak

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria IMRT Field Inserire mappa focus 10MV photon beam at Careggi Hospital

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria

Grazie per l’attenzione

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Trasparenze di appoggio

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria

TPR measurements (photons) For the same beam quality, detector centered at the isocentre, the TPR(d,5) have been measured and compared with ionization chamber. 6MV photon beam at Careggi Hospital

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria

Output factors (protons) Measurement performed at Catania

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Output factors (photon) These good results have been obtained resolving packaging problems Measurement performed at IBA site

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Angular dependence Measurement performed at IBA site

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria

Publications and dissemination A patent has been deposited: Italian patent No. FI2006A000166, 30 June 2006, University of Florence, Inventors: M. Bruzzi, M. Bucciolini, D. Menichelli, C. Talamonti. International patent application No. PCT/IB2007/ M. Casati, M. Bruzzi, M. Bucciolini, D. Menichelli, M. Scaringella, C. Piemonte and E. Fretwurst, ”Characterization of standard and oxygenated float zone Si diodes under radiotherapy beams"Nuclear Instruments and Methods in Physics ResearchA, 552, (2005) M. Bruzzi, M. Bucciolini, M. Casati, D. Menichelli, C. Talamonti, C. Piemonte, B. G. Svensson: "Epitaxial silicon devices for dosimetry applications”, Applied Physics Letters 2007, 90, D. Menichelli, M. Brianzi, M. Bruzzi, M. Bucciolini, M. Casati, A. De Sio, L. Marrazzo, C. Piemonte, C. Talamonti, M. Tesi:” Design and development of a silicon segmented detector for 2D dose measurements in radiotherapy”, Nuclear Instruments and Methods in Physics ResearchA, 583, (2007) C. Talamonti, M. Bucciolini, M. Bruzzi, L. Marrazzo, D. Menichelli.:“Preliminary dosimetric characterization of a silicon segmented detector for 2D dose verifications in radiotherapy“,Nuclear Instruments and Methods in Physics Research A, 583, ( 2007), pp C. Talamonti, M. Bucciolini, M. Bruzzi, L. Marrazzo, D. Menichelli.:“Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy,Nuclear Instruments and Methods in Physics Research A, 596 ( 2008), pp

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Carrier lifetime decreases with dose due to the creation of generation- recombination centers. To mitigate the sensitivity decrease with the accumulated dose, commercially available Si diodes are usually pre-irradiated up to about 10 kGy with high energy electrons. After this pre-irradiation, a further, less pronounced, decay in sensitivity is still observed. For this reason, the hospital use of silicon dosimeters requires a frequent recalibration, which represents a serious drawback. Sensitivity S is proportional to the active volume V and largely determined by the minority carrier diffusion length L. The sensitivity degradation is thus related to the decrease of the minority carrier lifetime  ( L = (D  ) 1/2 with D diffusion constant). G.Rikner and E.Grusell, Effects of Radiation damage on p-type silicon detectors, Phys. Med. Biol. 1983, 28, 11,

M. Bruzzi, Sviluppo di sistemi di rivelazione a silicio per imaging con protoni e dosimetria Dose rate dependence (photons) The dose rate has been changed varying both the pulse repetition frequency (data set A) and both PRF and SSD, i.e. the dose per pulse (data set B). 6MV photon beam at Careggi Hospital Comparison of relative dose measured with the Si dosimeter and a Farmer ionization chamber. 60 Co source beam at Lucca Hospital