4: DataLink Layer1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.

Slides:



Advertisements
Similar presentations
Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner.
Advertisements

Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
1 Data Link Layer Ethernet Bridges Token Ring. 2 Summary of MAC protocols What do you do with a shared media? Channel Partitioning: time, frequency or.
Internet protocol stack
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
1 Comnet 2006 Communication Networks Recitation 3 DNS & ARP.
11/11/ /13/2003 DLL, Error Detection, MAC, ARP November 11-13, 2003.
1 Improving Web Servers performance Objectives:  Scalable Web server System  Locally distributed architectures  Cluster-based Web systems  Distributed.
1 Announcement r Homework #3 was due last night r Homework #4 is out.
Roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and ISPs 1.6 Delay & loss.
Review r Multicast Routing m Three options m source-based tree: one tree per source shortest path trees reverse path forwarding m group-shared tree: group.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
1 CSE401N: COMPUTER NetworkS LAN address & ARP Ethernet Basics.
1 Netcomm 2005 Communication Networks Recitation 3.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1 Data Link Layer part two How LANs work Switching The ARP protocol Data link reliability Interconnecting LANs Hubs, bridges, routers.
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
5: DataLink Layer5a-1 Summary of MAC protocols r What do you do with a shared media? m Channel Partitioning, by time, frequency or code Time Division,Code.
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
LAN Technologies. LAN technologies Data link layer so far: –services, error detection/correction, multiple access Next: LAN technologies –addressing –Ethernet.
Lecture 16 Random Access protocols r A node transmits at random at full channel data rate R. r If two or more nodes “collide”, they retransmit at random.
1 Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
Network LayerII-1 RSC Part II: Network Layer 4. IP in operation Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
1 Mao W07 Multiple Access EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement:
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
1 ECE453 – Introduction to Computer Networks Lecture 12 – Network Layer (IV)
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Data Link Layer Lecture 17 Imran Ahmed University of Management & Technology.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer LANs.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
Multiple Access Links and Protocols
EEC-484 Computer Networks Lecture 13 Wenbing Zhao 12/6/20151.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r link layer services r error detection, correction r multiple access protocols and LANs.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
CS470 Computer Networking Protocols Huiping Guo Department of Computer Science California State University, Los Angeles 4. Internetworking.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
Net5: ARP 協定 授課教師:雲林科技大學 張慶龍 老師. IP Address/Physical Address Static Mapping  IP broadcast address maps to Ethernet broadcast address  IP Multicast Address.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:
2002 년 2 학기인터넷통신망 년 2 학기. 인터넷통신망 2 Acknowledgement Some figures and texts are from: –Govindan –Kurose –Peterson & Davie –Huitema –Halabi –Retana,
CSEN 404 Data Link Layer Amr El Mougy Lamia AlBadrawy.
Network Layer session 1 TELE3118: Network Technologies Week 5: Network Layer Forwarding, Features Some slides have been taken from: r Computer.
CPSC 441: Link Layer1 Link Layer Addressing Slides originally from Carey Williamson Notes derived from “ Computer Networking: A Top Down Approach”, by.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction to Networks
Address Resolution Protocol (ARP)
Link Layer 5.1 Introduction and services
CS4470 Computer Networking Protocols
MAC Addresses and ARP 32-bit IP address:
CS 5565 Network Architecture and Protocols
University of Pittsburgh
ARP: Address Resolution Protocol
Mac Addressing, Ethernet, and Interconnections
Address Resolution Protocol (ARP)
Introduction to Networks
Some slides have been taken from:
Link Layer 5.1 Introduction and services
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Chapter 5: Link Layer 5.1 Introduction and services
Presentation transcript:

4: DataLink Layer1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing m Ethernet m hubs, bridges, switches m m PPP m ATM

4: DataLink Layer2 LAN Addresses and ARP 32-bit IP address: r network-layer address r used to get datagram to destination network (recall IP network definition) LAN (or MAC or physical) address: r used to get datagram from one interface to another physically-connected interface (same network) r 48 bit MAC address (for most LANs) burned in the adapter ROM

4: DataLink Layer3 LAN Addresses and ARP Each adapter on LAN has unique LAN address

4: DataLink Layer4 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) r Analogy: (a) MAC address: like Social Security Number (b) IP address: like postal address r MAC flat address => portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m depends on network to which one attaches

4: DataLink Layer5 Recall earlier routing discussion A B E Starting at A, given IP datagram addressed to B: r look up net. address of B, find B on same net. as A r link layer send datagram to B inside link-layer frame B’s MAC addr A’s MAC addr A’s IP addr B’s IP addr IP payload datagram frame frame source, dest address datagram source, dest address

4: DataLink Layer6 ARP: Address Resolution Protocol r Each IP node (Host, Router) on LAN has ARP module, table r ARP Table: IP/MAC address mappings for some LAN nodes m TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine MAC address of B given B’s IP address?

4: DataLink Layer7 ARP protocol r A knows B's IP address, wants to learn physical address of B r A broadcasts ARP query pkt, containing B's IP address m all machines on LAN receive ARP query r B receives ARP packet, replies to A with its (B's) physical layer address r A caches (saves) IP-to-physical address pairs until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed

4: DataLink Layer8 Routing to another LAN walkthrough: routing from A to B via R r In routing table at source Host, find router r In ARP table at source, find MAC address E6-E BB-4B, etc A R B

4: DataLink Layer9 r A creates IP packet with source A, destination B r A uses ARP to get R’s physical layer address for r A creates Ethernet frame with R's physical address as dest, Ethernet frame contains A-to-B IP datagram r A’s data link layer sends Ethernet frame r R’s data link layer receives Ethernet frame r R removes IP datagram from Ethernet frame, sees its destined to B r R uses ARP to get B’s physical layer address r R creates frame containing A-to-B IP datagram sends to B A R B