CSEN 404 Application Layer I Amr El Mougy Lamia Al Badrawy.

Slides:



Advertisements
Similar presentations
HyperText Transfer Protocol (HTTP)
Advertisements

Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
Application Layer-11 CSE401N: Computer Networks Lecture-4 Application Layer Overview HTTP.
2: Application Layer1 Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols m transport-layer service.
Chapter 2: Application Layer
HyperText Transfer Protocol (HTTP) Computer Networks Computer Networks Spring 2012 Spring 2012.
1 Creating a network app Write programs that m run on different end systems and m communicate over a network. m e.g., Web: Web server software communicates.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Application Layer Overview and Web/HTTP
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss.
9/16/2003-9/18/2003 The Application Layer and Java Programming September 16-18, 2003.
Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Week 11: Application Layer1 Week 11: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Web, HTTP and Web Caching
Introduction to the Application Layer Computer Networks Computer Networks Spring 2012 Spring 2012.
2: Application Layer1 Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols m transport-layer service.
Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 4.
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
2/9/2004 Web and HTTP February 9, /9/2004 Assignments Due – Reading and Warmup Work on Message of the Day.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss.
Dr. Philip Cannata 1 Principles of Network Applications.
Introduction 1 Lecture 5 Application Layer slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
2: Application Layer World Wide Web (WWW). Introduction 1-2 Internet protocol stack (recap) r application: supporting network applications m FTP,
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Chapter 2, slide: 1 CS 372 – introduction to computer networks* Monday June 28 Announcements: r Lab 1 is due today r Lab 2 is posted today and is due next.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
19-1 Last time □ TCP ♦ Throughput ♦ Fairness ♦ Delay modeling □ TCP socket programming.
1 Application Layer Lecture 4 Imran Ahmed University of Management & Technology.
CS 3830 Day 7 Introduction : Application Layer 2 Processes communicating Process: program running within a host. r within same host, two processes.
Mail (smtp), VoIP (sip, rtp)
2: Application Layer1 CS 4244: Internet Software Development Dr. Eli Tilevich.
Rensselaer Polytechnic Institute Shivkumar Kalvanaraman, Biplab Sikdar 1 The Web: the http protocol http: hypertext transfer protocol Web’s application.
Week 11: Application Layer1 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,…
2: Application Layer1 Web and HTTP First some jargon Web page consists of base HTML-file which includes several referenced objects Object can be HTML file,
What makes a network good? Ch 2.1: Principles of Network Apps 2: Application Layer1.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Sockets process sends/receives messages to/from its socket
CS1652 September 5 th, 2013 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Application Layer of TCP/IP. Application Layer Application Layer Architecture transport-layer service models client-server paradigm peer-to-peer paradigm.
1 HTTP EECS 325/425, Fall 2005 September Chapter 2: Application layer r 2.1 Principles of network applications m app architectures m app requirements.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Lecture 23 Application Layer ELEN E6761: Communication Networks Instructor: Javad Ghaderi Slides adapted from “Computer Networking: A Top Down Approach”
2: Application Layer 1 Application layer  Principles of network applications  Web and HTTP  FTP, TFTP  TELNET  Electronic Mail  SMTP, POP3, IMAP.
2: Application Layer 1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
Important r There will be NO CLASS on Friday 1/30/2015! r Please mark you calendars 1.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Advance Computer Networks Lecture#05 Instructor: Engr. Muhammad Mateen Yaqoob.
1 Chapter 2: Application Layer Part A Introduction r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 7 Omar Meqdadi Department of Computer Science and Software Engineering University of.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Week 11: Application Layer 1 Web and HTTP r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists.
@Yuan Xue CS 283Computer Networks Spring 2011 Instructor: Yuan Xue.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Lecture 5 Internet Core: Protocol layers. Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP 
2: Application Layer 1 Chapter 2 Application Layer These ppt slides are originally from the Kurose and Ross’s book. But some slides are deleted and added.
CSEN 503 Introduction to Communication Networks Amr El Mougy Rana Eisa **Slides are attributed to J. F. Kurose.
Introduction to Networks
Internet transport protocols services
Chapter 2 Application Layer
Introduction to Networks
لایه ی کاربرد مظفر بگ محمدی 2: Application Layer.
Presentation transcript:

CSEN 404 Application Layer I Amr El Mougy Lamia Al Badrawy

1-2 Introduction 2

Internet Traffic  Global IP traffic will reach 1.1 Zettabytes per year by 2016, or 88.4 exabytes per month  An increase of 5 –fold over the last 5 years  An increase of 3 folds is expected by 2019  Wireless and mobile traffic makes up 54% of global traffic  By 2019, two thirds of global traffic will be generated by non-PC devices (welcome to the IoT)  PB =  EB =  ZB =

2: Application Layer4 Roadmap: Application layer  Principles of network applications  Web and HTTP  SMTP

2: Application Layer5 Creating a network app write programs that  run on (different) end systems  communicate over network  e.g., web server software communicates with browser software No need to write software for network-core devices  Network-core devices do not run user applications  applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical

2: Application Layer 6 Application architectures  Client-server  Peer-to-peer (P2P)  Hybrid of client-server and P2P

2: Application Layer 7 Client-server architecture server:  always-on host  permanent IP address  server farms for scaling clients:  communicate with server  may be intermittently connected  may have dynamic IP addresses  do not communicate directly with each other client/server

2: Application Layer 8

9 Pure P2P architecture  no always-on server  arbitrary end systems directly communicate  peers are intermittently connected and change IP addresses Highly scalable but difficult to manage peer-peer

2: Application Layer 10 Hybrid of client-server and P2P Skype  voice-over-IP P2P application  centralized server: finding address of remote party:  client-client connection: direct (not through server) Instant messaging  chatting between two users is P2P  centralized service: client presence detection/location user registers its IP address with central server when it comes online user contacts central server to find IP addresses of buddies

2: Application Layer11 Processes communicating Process: program running within a host  within same host, two processes communicate using inter-process communication (defined by OS)  processes in different hosts communicate by exchanging messages Client process: process that initiates communication Server process: process that waits to be contacted rNote: applications with P2P architectures have client processes & server processes

2: Application Layer 12 Sockets  process sends/receives messages to/from its socket  socket analogous to door  sending process pushes message through the door  sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process process TCP with buffers, variables socket host or server process TCP with buffers, variables socket host or server Internet controlled by OS controlled by app developer rAPI: (1) choice of transport protocol; (2) ability to fix a few parameters (lots more on this later)

2: Application Layer13 What transport service does an app need? Data loss  some apps (e.g., audio) can tolerate some loss  other apps (e.g., file transfer, telnet) require 100% reliable data transfer Timing  some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” Throughput rsome apps (e.g., multimedia) require minimum amount of throughput to be “effective” rother apps (“elastic apps”) make use of whatever throughput they get Security rEncryption, data integrity, …

2: Application Layer 14 Transport service requirements of common apps Application file transfer Web documents real-time audio/video stored audio/video interactive games instant messaging Data loss no loss loss-tolerant no loss Throughput elastic audio: 5kbps-1Mbps video:10kbps-5Mbps same as above few kbps elastic Time Sensitive no yes, 100’s msec yes, few secs yes, 100’s msec yes and no

2: Application Layer15 Internet transport protocols services TCP service:  connection-oriented: setup required between client and server processes  reliable transport between sending and receiving process  flow control: sender won’t overwhelm receiver  congestion control: throttle sender when network overloaded  does not provide: timing, minimum throughput guarantees, security UDP service:  unreliable data transfer between sending and receiving process  does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security Q: why bother? Why is there a UDP?

2: Application Layer 16 Internet apps: application, transport protocols Application remote terminal access Web file transfer streaming multimedia Internet telephony Application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (eg Youtube), RTP [RFC 1889] SIP, RTP, proprietary (e.g., Skype) Underlying transport protocol TCP TCP or UDP typically UDP

2: Application Layer17 Addressing processes  to receive messages, process must have identifier  host device has unique 32-bit IP address  Exercise: use ipconfig from command prompt to get your IP address (Windows)  Q: does IP address of host on which process runs suffice for identifying the process?  A: No, many processes can be running on same host  Identifier includes both IP address and port numbers associated with process on host  Example port numbers:  HTTP server: 80  Mail server: 25

2: Application Layer18 App-layer protocol defines  Types of messages exchanged,  e.g., request, response  Message syntax  what fields in messages & how fields are delineated  Message semantics  meaning of information in fields  Rules for when and how processes send & respond to messages Public-domain protocols:  defined in RFCs  allows for interoperability  e.g., HTTP, SMTP, BitTorrent Proprietary protocols:  e.g., Skype, ppstream

2: Application Layer 19 Web and HTTP  Web page consists of objects  Object can be HTML file, JPEG image, Java applet, audio file,…  Web page consists of base HTML-file which includes several referenced objects  Each object is addressable by a URL  Example URL: host name path name

2: Application Layer20 HTTP overview HTTP: hypertext transfer protocol  Web’s application layer protocol  client/server model  client: browser that requests, receives, “displays” Web objects  server: Web server sends objects in response to requests PC running Explorer Server running Apache Web server Mac running Navigator HTTP request HTTP response

2: Application Layer21 HTTP overview (continued) Uses TCP:  client initiates TCP connection (creates socket) to server, port 80  server accepts TCP connection from client  HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)  TCP connection closed HTTP is “stateless”  server maintains no information about past client requests Protocols that maintain “state” are complex! rpast history (state) must be maintained rif server/client crashes, their views of “state” may be inconsistent, must be reconciled aside

2: Application Layer22 HTTP connections Nonpersistent HTTP  At most one object is sent over a TCP connection Persistent HTTP  Multiple objects can be sent over single TCP connection between client and server

2: Application Layer23 Nonpersistent HTTP Suppose user enters URL (contains text, references to 10 jpeg images) 1a. HTTP client initiates TCP connection to HTTP server (process) at on port HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index 1b. HTTP server at host waiting for TCP connection at port 80. “accepts” connection, notifying client 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket time

2: Application Layer24 Nonpersistent HTTP (cont.) 5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects 6. Steps 1-5 repeated for each of 10 jpeg objects 4. HTTP server closes TCP connection time

2: Application Layer 25 Non-Persistent HTTP: Response time Definition of RTT: time for a small packet to travel from client to server and back Response time:  one RTT to initiate TCP connection  one RTT for HTTP request and first few bytes of HTTP response to return  file transmission time total = 2RTT+transmit time time to transmit file initiate TCP connection RTT request file RTT file received time

2: Application Layer26 Persistent HTTP Nonpersistent HTTP issues:  requires 2 RTTs per object  OS overhead for each TCP connection  browsers often open parallel TCP connections to fetch referenced objects Persistent HTTP  server leaves connection open after sending response  subsequent HTTP messages between same client/server sent over open connection  client sends requests as soon as it encounters a referenced object  as little as one RTT per referenced object

2: Application Layer 27 HTTP request message  two types of HTTP messages: request, response  HTTP request message:  ASCII (human-readable format) GET /somedir/page.html HTTP/1.1 Host: User-agent: Mozilla/4.0 Connection: close Accept-language:fr (extra carriage return, line feed) request line (GET, POST, HEAD commands) header lines Carriage return, line feed indicates end of message

2: Application Layer 28 HTTP request message: general format

2: Application Layer29 Uploading form input Post method:  Web page often includes form input  Input is uploaded to server in entity body GET (URL) method:  Uses GET method  Input is uploaded in URL field of request line:

2: Application Layer30 Method types HTTP/1.0  GET  POST  HEAD  asks server to leave requested object out of response HTTP/1.1  GET, POST, HEAD  PUT  uploads file in entity body to path specified in URL field  DELETE  deletes file specified in the URL field

2: Application Layer 31 HTTP response message HTTP/ OK Connection close Date: Thu, 06 Aug :00:15 GMT Server: Apache/1.3.0 (Unix) Last-Modified: Mon, 22 Jun 1998 …... Content-Length: 6821 Content-Type: text/html data data data data data... status line (protocol, status code, status phrase) header lines data, e.g., requested HTML file

2: Application Layer32 HTTP response status codes 200 OK  request succeeded, requested object later in this message 301 Moved Permanently  requested object moved, new location specified later in this message (Location:) 400 Bad Request  request message not understood by server 404 Not Found  requested document not found on this server 505 HTTP Version Not Supported In first line in server->client response message. A few sample codes:

2: Application Layer33 User-server state: cookies Many major Web sites use cookies Four components: 1) cookie header line of HTTP response message 2) cookie header line in HTTP request message 3) cookie file kept on user’s host, managed by user’s browser 4) back-end database at Web site Example:  Susan always access Internet always from PC  visits specific e-commerce site for first time  when initial HTTP requests arrives at site, site creates:  unique ID  entry in backend database for ID

2: Application Layer34 Cookies: keeping “state” (cont.) client server usual http response msg cookie file one week later: usual http request msg cookie: 1678 cookie- specific action access ebay 8734 usual http request msg Amazon server creates ID 1678 for user create entry usual http response Set-cookie: 1678 ebay 8734 amazon 1678 usual http request msg cookie: 1678 cookie- spectific action access ebay 8734 amazon 1678 backend database

2: Application Layer35 Cookies (continued) What cookies can bring:  authorization  shopping carts  recommendations  user session state (Web e- mail) Cookies and privacy: rcookies permit sites to learn a lot about you ryou may supply name and to sites aside How to keep “state”: rprotocol endpoints: maintain state at sender/receiver over multiple transactions rcookies: http messages carry state