The Kidney.

Slides:



Advertisements
Similar presentations
Excretion and the Kidneys
Advertisements

Water regulation in the kidney
Integrative Physiology II: Fluid and Electrolyte Balance
Kidney and renal dialysis
Early Filtrate Processing-
 Parts of the kidney  Urine formation.  Why is urine more concentrated then other times?  Due to reabsorption of water.
OSMOREGULATION.
F214: Communication, Homeostasis and Energy 4. 2
The Kidney.
 Most metabolic reactions take place in water  Maintenance necessary for homeostasis ◦ Volume ◦ Concentration of solutes  Terrestrial animals have.
Lesson Review.
Water Homeostasis concentration and dilution of urine.
Urinary System Spring 2010.
[Outer cortex, inner medulla, and renal pelvis]
Chapter 37: The human urinary system
Osmoregulation – hormonal control
The kidney Topic 11.3.
Human Health & Physiology
The Kidney.
Topic 11: Human Health and Physiology
Objectives of lesson 1. Outline the structure & associated blood supply & draw a diagram of the nephron. 2. Explain urine formation, including: Bowman's.
Formation of Urine.
Unit O: Urinary System.
The Kidneys and Homeostasis Homeostasis is the ability to control the internal environment to enable organisms to be independent of the external environment.
Excretory System.
The excretory system. By the end of today’s class you should be able to:  State the function, location, products of the skin and lungs as organs of excretion.
© SSER Ltd.. Water Balance The concentration and volume of the urine, excreted by mammalian kidneys, is determined by the amount of water reabsorbed from.
11.3 Excretion: The Kidney Define Excretion Metabolic reactions generate waste products. Waste products need to be mitigated and eliminated. This.
28 April » The urinary system produces urine. The production of urine has three main functions: 1)Excretion of waste products of metabolism, especially.
Control of The Internal Environment. Water Gain and Water Loss Mammals gain and lose water in several ways. Over the course of the day water gain is equal.
Urinary System. Urinary System Function The function of the urinary system is to help maintain the appropriate balance of water and solutes in the bodies.
The kidney cont… WALT To recap the structure and function of the kidney To understand the processes of selective reabsorption and where this occurs The.
Excretion. Syllabus links Plant Excretion The role of leaves as excretory organsof plants The Excretory System in the Human Role of the excretory.
Learning Objectives EXCRETION Recall the origin of CO 2 and O 2 as waste products of metabolism. Recall that the lungs, kidneys and skin are organs of.
200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt.
Excretion and the Kidney HL (Paper 1 and 2). Excretion What is excretion? – Elimination of waste from the metabolic processes, to maintain homeostasis.
Reabsorption In the Kidney. Objectives 1)Describe the general structure of the kidney, the nephron, and associated blood vessels 2)Explain the functioning.
A Journey Through the Nephron Jowie Papa. Kidneys and Homeostasis Functions of the loop of Henle Osmoregulation – Controls balance of water in blood and.
Formation of Urine Formation of Urine.
Objectives – What you will need to know from this section  Outline the structure & associated blood supply & draw a diagram.  Explain urine formation,
7.6 Define gel electrophoresis. Briefly, describe how it works.
Kidney 1. Functions: removal of metabolic waste products regulation of the water content of body fluids regulation of pH of body fluids regulation of chemical.
Hormonal Control of Osmoregulation & Excretion WALT That water concentrations are regulated by a hormone called ADH That ADH effects the permeability.
11.3.1, , Kidney and Excretion. Draw the kidney A- Renal Vein B- Renal Artery C- Ureter D- Medulla E- Pelvis F- Cortex.
Biology HL Mrs. Ragsdale.  Excretion – removal of waste products from the body leftover from metabolic pathways  Produce urine  Osmoregulation – control.
Excretion The removal from the body of the waste products of metabolism Includes removal through the lungs, skin, urinary system and kidney Done through.
IGCSE BIOLOGY SECTION 2 LESSON 6. Content Section 2 Structures and functions in living organisms a) Levels of organisation b) Cell structure c) Biological.
4.2.1 Excretion By Ms Cullen. What is excretion?
What’s the link?.
The function of kidney. The kidneys main functions are to filter the blood of toxins and control the water balance of the body. To do this the kidneys.
Structure Outer part of each kidney – CORTEX Inner part of each kidney – MEDULLA Blood enters the kidney through the RENAL ARTERY and leaves through the.
K IDNEY STRUCTURE T HE NEPHRON Nephron begins as a bowman's capsule in the cortex and leads to a highly coiled proximal convoluted tubule. This leads.
The Kidney. The Structure of the Kidney There are three distinct regions based on the distribution of the different sections of the nephron. The human.
Regulatory functions of the kidneys Reabsorption of water – Excretion of hypertonic depends on reabsorption of water from collecting ducts Reabsorption.
Topic 11.3 The Kidney & Osmoregulation
Urinary System 21 April 2017.
Human Health & Physiology
Ch. 14 Part 5 Loop of Henle, Distal Convoluted Tubule, Collecting Duct, Osmoregulation.
Chapter 10 – Excretion.
11.3 The Kidney and Excretion Excretion. The Kidney
Ultrafiltration and Selective Reabsorption
Topic 11.3 The Kidney & Osmoregulation
Osmoregulation.
Substitute teacher: Omar Murray Teacher: Mrs.Haughton
Urine Formation.
Antidiuretic hormone (ADH) Good example of Negative feedback loop
Antidiuretic hormone (ADH) Good example of Negative feedback loop
Homeostasis of body fluid
Role Of Distal Tubule Fluid Leaves the loop of Henle and enters the distal convoluted tubule in the renal cortex This fluid has an osmolarity of 100 mOsm/L.
Presentation transcript:

The Kidney

Water Reabsorption After selective reabsorption in the proximal convoluted tubule, the loop of Henle creates a low (very negative) water potential in the medulla to ensure more water is reabsorbed from the collecting duct

Loop of Henle Consists of a descending limb into the medulla and an ascending limb back out to the cortex Allows salts (sodium and chloride ions) to be transferred from the ascending limb to the descending limb The overall effect is to increase the concentration of salts in the tubule fluid so they diffuse out from the ascending limb into the surrounding medulla tissue giving a low (very negative) water potential

Water Potential As the fluid in the tubule descends into the medulla down the descending loop, the water potential becomes lower (more negative) This is due to : loss of water by osmosis to the surrounding tissue fluid diffusion of the sodium and chloride ions into the tubule from surrounding tissue fluid 800

Water Potential As the fluid in the tubule ascends back up towards the cortex, the water potential becomes higher (less negative) This is due to : sodium and chloride ions diffusing out of the tubule into the tissue fluid at the base higher up the tubule, sodium and chloride ions are actively transported out into the tissue fluid wall of the ascending limb is impermeable to water so it cannot leave the tubule SO…the fluid loses salts but not water as it moves up the ascending limb 800

This arrangement is known as the hairpin counter-current multiplier system. It increases the efficiency of salt transfer from the ascending limb to the descending limb This causes a build up of salt in the surrounding tissue fluid ‘Student Speak’ Water moves out of the descending limb, making the fluid in the tubule very salty. Salt then diffuses out of the base of the ascending limb as it is at high concentrations (very negative water potential), and then is transported out using active transport at the top of the ascending limb The removal of ions from the ascending limb makes the urine very dilute and water can then be reabsorbed by the body from the distal tubules and collecting ducts Water Potential 800

The Collecting Duct From the top of the ascending limb, the tubule fluid passes through the distal convoluted tubule where active transport adjusts the concentration of various salts The fluid has a high water potential (contains a lot of water) and flows into the collecting duct The collecting duct carries fluid into the medulla which contains a lot of salts (low/very negative water potential) As the fluid passes through, water moves by osmosis, from the tubule fluid into the surrounding tissue It then enters the blood capillaries by osmosis and is carried away The amount of water absorbed depends on the permeability of the walls of the collecting duct By the time the urine reaches the pelvis it has a low (very negative) water potential and the concentration of urea and salts is high

Osmoregulation Osmoregulation is the control of water and salt levels in the body Water is gained from food, drink and metabolism Water is lost in urine, sweat, water vapour in exhaled air and faeces

The Collecting Duct and ADH The walls of the collecting duct can be made more or less permeable according to the needs of the body The walls of the collecting duct respond to levels of antidiuretic hormone (ADH) in the blood Cells in the wall have membrane bound receptors for ADH The ADH binds to these receptors and causes a chain of enzyme controlled reactions inside the cell The end result is to insert vesicles containing water permeable channels (aquaporins) into the cell surface membrane This makes the walls more permeable to water More ADH in the blood means more aquaporins are inserted allowing more water to be reabsorbed, and less, more concentrated urine with a lower (more negative) water potential

Less ADH Less ADH in the blood means that less water is reabsorbed The cell surface membrane folds inwards to create new vesicles that remove the aquaporins from the membrane The wall is less permeable and more water passes out in urine with a higher (less negative) water potential

Adjusting the Concentration of ADH Osmoreceptors in the Hypothalalmus monitor the blood’s water potential When the water potential is low, these cells lose water by osmosis and shrink, stimulating Neurosecretory cells (specialised nerve cells) Neurosecretory cells produce ADH in their cell body, which flows down the axon to the terminal bulb in the posterior pituitary gland where it is stored until needed

Adjusting the Concentration of ADH When the Neurosecretory cells are stimulated, action potentials are sent down the axons, causing a release of ADH ADH enters blood capillaries running through the posterior pituitary gland and is transported round the body and acts on the wall of the collecting duct When water potential rises (less negative) less ADH is released ADH is slowly broken down (it has a half life of 20 minutes)