Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-3.

Slides:



Advertisements
Similar presentations
Lecture Slides Elementary Statistics Eleventh Edition
Advertisements

1 Pertemuan 06 Peluang Beberapa Sebaran Khusus Peubah Acak Diskrit Mata kuliah: A Statistik Ekonomi Tahun: 2010.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-4.
Probabilistic and Statistical Techniques
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 6-6 Normal as Approximation to Binomial Created by.
Chapter 4 Probability Distributions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-2.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 3-1.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-2.
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
Binomial Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Binomial Probability Distributions
5-3 Binomial Probability Distributions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-3.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Discrete Distributions Chapter 5.
Section 5-3 Binomial Probability Distribution. BINOMIAL PROBABILITY DISTRTIBUTION 1.The procedure has a fixed number of trials. 2.The trials must be independent.
1 Overview This chapter will deal with the construction of probability distributions by combining the methods of Chapter 2 with the those of Chapter 4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Statistics 1: Elementary Statistics Section 5-4. Review of the Requirements for a Binomial Distribution Fixed number of trials All trials are independent.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-3 Binomial Probability Distributions.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 5 Discrete Probability Distributions 5-1 Review and Preview 5-2.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Section 5-3 Binomial Probability Distributions. BINOMIAL PROBABILITY DISTRTIBUTION 1.The procedure has a fixed number of trials. 2.The trials must be.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Binomial Experiments Section 4-3 & Section 4-4 M A R I O F. T R I O L A Copyright.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
Chapter 4. Discrete Random Variables A random variable is a way of recording a quantitative variable of a random experiment. A variable which can take.
Binomial Probability Distributions
Created by Tom Wegleitner, Centreville, Virginia Section 3-6 Probabilities Through Simulations.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Statistics Section 5-6 Normal as Approximation to Binomial.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-5 Poisson Probability Distributions.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
1 Chapter 4. Section 4-3. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION E LEMENTARY.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
5-4 Parameters for Binomial Distributions In this section we consider important characteristics of a binomial distribution including center, variation.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-1 Review and Preview.
Slide Slide 1 Section 5-3 Binomial Probability Distributions.
Section 5-3 Binomial Probability Distributions. Binomial Probability Distribution A binomial probability distribution results from a procedure that meets.
Binomial Probability Distribution
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
1 7.3 RANDOM VARIABLES When the variables in question are quantitative, they are known as random variables. A random variable, X, is a quantitative variable.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Created by Tom Wegleitner, Centreville, Virginia Section 4-5 The Poisson Distribution.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Binomial Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 4 Probability Distributions
Chapter 5 Probability 5.2 Random Variables 5.3 Binomial Distribution
Lecture Slides Elementary Statistics Eleventh Edition
Mean, Variance, and Standard Deviation for the Binomial Distribution
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Elementary Statistics Eleventh Edition
Elementary Statistics
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Tenth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Random Variables Random variable a variable (typically represented by x) that takes a numerical value by chance. For each outcome of a procedure, x takes.
Binomial Probability Distributions
Binomial Distributions
Presentation transcript:

Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-3 Binomial Probability Distributions

Slide Slide 2 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Key Concept This section presents a basic definition of a binomial distribution along with notation, and it presents methods for finding probability values. Binomial probability distributions allow us to deal with circumstances in which the outcomes belong to two relevant categories such as acceptable/defective or survived/died.

Slide Slide 3 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Definitions A binomial probability distribution results from a procedure that meets all the following requirements: 1. The procedure has a fixed number of trials. 2. The trials must be independent. (The outcome of any individual trial doesn’t affect the probabilities in the other trials.) 3. Each trial must have all outcomes classified into two categories (commonly referred to as success and failure). 4. The probability of a success remains the same in all trials.

Slide Slide 4 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Notation for Binomial Probability Distributions S and F (success and failure) denote two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively, so P(S) = p(p = probability of success) P(F) = 1 – p = q(q = probability of failure)

Slide Slide 5 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Notation (cont) n denotes the number of fixed trials. x denotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive. p denotes the probability of success in one of the n trials. q denotes the probability of failure in one of the n trials. P(x) denotes the probability of getting exactly x successes among the n trials.

Slide Slide 6 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Important Hints  Be sure that x and p both refer to the same category being called a success.  When sampling without replacement, consider events to be independent if n < 0.05N.

Slide Slide 7 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Methods for Finding Probabilities We will now discuss three methods for finding the probabilities corresponding to the random variable x in a binomial distribution.

Slide Slide 8 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Method 1: Using the Binomial Probability Formula P(x) = p x q n-x ( n – x )! x ! n !n ! for x = 0, 1, 2,..., n where n = number of trials x = number of successes among n trials p = probability of success in any one trial q = probability of failure in any one trial (q = 1 – p)

Slide Slide 9 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Method 2: Using Table A-1 in Appendix A Part of Table A-1 is shown below. With n = 12 and p = 0.80 in the binomial distribution, the probabilities of 4, 5, 6, and 7 successes are 0.001, 0.003, 0.016, and respectively.

Slide Slide 10 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. STATDISK, Minitab, Excel and the TI-83 Plus calculator can all be used to find binomial probabilities. Method 3: Using Technology Minitab STATDISK

Slide Slide 11 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Method 3: Using Technology STATDISK, Minitab, Excel and the TI-83 Plus calculator can all be used to find binomial probabilities. Excel TI-83 Plus calculator

Slide Slide 12 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Strategy for Finding Binomial Probabilities  Use computer software or a TI-83 Plus calculator if available.  If neither software nor the TI-83 Plus calculator is available, use Table A-1, if possible.  If neither software nor the TI-83 Plus calculator is available and the probabilities can’t be found using Table A-1, use the binomial probability formula.

Slide Slide 13 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Rationale for the Binomial Probability Formula P(x) = p x q n-x n !n ! ( n – x )! x ! The number of outcomes with exactly x successes among n trials

Slide Slide 14 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Binomial Probability Formula P(x) = p x q n-x n !n ! ( n – x )! x ! Number of outcomes with exactly x successes among n trials The probability of x successes among n trials for any one particular order

Slide Slide 15 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Recap In this section we have discussed:  The definition of the binomial probability distribution.  Important hints.  Three computational methods.  Rationale for the formula.  Notation.

Slide Slide 16 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution

Slide Slide 17 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Key Concept In this section we consider important characteristics of a binomial distribution including center, variation and distribution. That is, we will present methods for finding its mean, variance and standard deviation. As before, the objective is not to simply find those values, but to interpret them and understand them.

Slide Slide 18 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. For Any Discrete Probability Distribution: Formulas Mean µ =  [ x P ( x )] Variance  2  = [  x 2 P ( x ) ] – µ 2 Std. Dev  = [  x 2 P(x) ] – µ 2

Slide Slide 19 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Binomial Distribution: Formulas Std. Dev.  = n p q Mean µ = n p Variance  2  = n p q Where n = number of fixed trials p = probability of success in one of the n trials q = probability of failure in one of the n trials

Slide Slide 20 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Interpretation of Results Maximum usual values = µ + 2  Minimum usual values = µ – 2  It is especially important to interpret results. The range rule of thumb suggests that values are unusual if they lie outside of these limits:

Slide Slide 21 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Recap In this section we have discussed:  Mean,variance and standard deviation formulas for the any discrete probability distribution.  Interpreting results.  Mean,variance and standard deviation formulas for the binomial probability distribution.