Roteiro Introdução Caracterização da Área de Estudo – Arraial do Cabo (entorno da bóia) Fundamentos teóricos – Ressurgencia – Fluxos de calor COARE (modelo)

Slides:



Advertisements
Similar presentations
Mechanisms of ocean- atmosphere interactions Arnaud Czaja SPAT PG lecture Oct
Advertisements

9 de setembro de 2010 LNCC From observation to modeling: Lessons and regrets from 36 years in the field. David Fitzjarrald Atmospheric Sciences Research.
Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA
Circulation in the atmosphere
Earth System Data Record (ESDR) for Global Evapotranspiration. Eric Wood Princeton University ©Princeton University.
Incoming Solar (Shortwave) at TOA DecemberMarch JuneSeptember.
Chapter 6: Global Fluxes and The Deep Circulation Heat Budget Conservation of Salt Oceanic Water Masses Oceanic Mixing Temperature - Salinity Diagrams.
FEP 114 – Aula 3b. Objetivo: Determinar o intervalo de temperatura em que os calorímetros utilizados podem ser considerados ideais. Determinar o calor.
The diagram shows weather instruments A and B.
Moisture Moisture = Water Vapor (gas) Gets into the atmosphere by: 1.Evaporation = liquid to gas (opposite of condensation) 2.Transpiration = plants release.
FACTORS INFLUENCING CLIMATE NOVEMBER 18, MAIN FACTORS THAT INFLUENCE CLIMATE Latitude Mountain and Elevation Water bodies Moving air Ocean Currents.
Russian proposals to Scientific program of Hydrometeorological observatory in framework of meteorological and radiation measurements (prepared by A. Makshtas)
Aerosol Optical Depth measurements in the Azores Fernanda Carvalho 1 Diamantino Henriques 1 Paulo Fialho 2 Vera Bettencourt 1 1 Instituto de Meteorologia.
Why We Care or Why We Go to Sea.
A Spreadsheet Macro for Post- Processing Data from a Weather Station/Energy Balance System Antonio Gonzalez 1 and Eric Harmsen 2, 1 Dept. of Mechanical.
Air – Sea Measurements from Ships: Fluxes, Time Series, Remote Sensing Dr. Jeff Hare CIRES – University of Colorado and NOAA Earth Systems Research Lab.
ATM 301 Lecture #11 (sections ) E from water surface and bare soil.
ZONEAMENTO AGRÍCOLA NOVOS RUMOS Daniel Pereira Guimarães.
Ocean Surface heat fluxes Lisan Yu and Robert Weller
Height Matters. Wind, Temperature, and Humidity.
Surface Energy Budget R = - (G + H + L )
Climate-Weather Presentation For Climate Modeling 11 September 2015.
Project Overview and the Planetary Conditions of Mars Scott P. Milroy, Ph.D. USM Department of Marine Science October 2012 Pioneering Mars: Turning.
Three Factors of Weather
Climate-Weather Presentation For Climate Modeling 20 September 2013.
Snow modelling using Surfex with the Crocus snow scheme for Norway Dagrun Vikhamar-Schuler 1 and Karsten Müller 2 1 MET.NO, 2 NVE.
Introduction to Sensors and Calibration Factors. Choosing a suitable recording range on a data logger Logger will have several range options: e.g. -10.
Height Matters. Wind, Temperature, and Humidity.
Reducing Canada's vulnerability to climate change - ESS Towards a water budget for Canada: are reanalyses suitable for the task?
Simulations of the snow covered sea ice surface temperature and microwave effective temperature at L-band Rasmus Tonboe Danish Meteorological Institute.
Hydrologic Losses - Evaporation Learning Objectives Be able to calculate Evaporation from a lake or reservoir using the following methods – Energy Balance.
Hydrologic Losses - Evaporation
Jan 2016 Solar Lunar Data.
English Trabalho elaborado por: Laura Barroso nº 26.
Automatic Weather Station (BAS)
Polar Area Weather Station (PAWS)
Potential Evapotranspiration (PET)
Q1 Jan Feb Mar ENTER TEXT HERE Notes
Question 1 height of the 1000 hPa surface pressure (Pa) at sea level.
Average Monthly Temperature and Rainfall
Apr-Jun Jan-Mar Jul-Sep Oct-Dec
Chapter 10, Lesson 3 Atmosphere and Air Temperature
Why Coastal Climates are moderated by water
Review Question Consider an unconfined aquifer overlying impermeable bedrock with the following properties Porosity 27% Specific retention 12% Thickness.

Gantt Chart Enter Year Here Activities Jan Feb Mar Apr May Jun Jul Aug
Q1 Q2 Q3 Q4 PRODUCT ROADMAP TITLE Roadmap Tagline MILESTONE MILESTONE
Hydrologic Losses - Evaporation

Electricity Cost and Use – FY 2016 and FY 2017
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Compare and Contrast of cloud base height data
Text for section 1 1 Text for section 2 2 Text for section 3 3
MEDITERRANEAN CLIMATE
FIGURE 4.4 The water vapor content (humidity) inside this air parcel can be expressed in a number of ways. Fig. 4-4, p.80.
Text for section 1 1 Text for section 2 2 Text for section 3 3
Q1 Q2 Q3 Q4 PRODUCT ROADMAP TITLE Roadmap Tagline MILESTONE MILESTONE
Aim: How can we explain air pressure?

Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Objective - To make a line graph.
Text for section 1 1 Text for section 2 2 Text for section 3 3
TECHINICAL IMPLEMENTATIONS: -Google Analytics for all pages; -SSL certification; -Google Page Speed mobile 100(current is 84) -Google Page Speed desktop.
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3

Q1 Q2 Q3 Q4 PRODUCT ROADMAP TITLE Roadmap Tagline MILESTONE MILESTONE
Presentation transcript:

Roteiro Introdução Caracterização da Área de Estudo – Arraial do Cabo (entorno da bóia) Fundamentos teóricos – Ressurgencia – Fluxos de calor COARE (modelo) – TSM Materiais e Métodos (Dados e metodologia) – Bóias – satélites – Passos metodologicos (processamento de dados; calculo de fluxos turbulentos, indeice de ressurencia e outros) Resultados (preliminares) Cronograma

Exemplo de ocorrência de erros períodos de ressurgencia 7 FEV 14 9 FEV FEV 14

7FEV14 Erro = 1,829

7FEV14 diamêsanohorapressão atm. (hPa) temp. ar (°C) irradiance (W/m²) tsm (sup) (°C) tsm (10m) (°C) dir. vento (°) int. rajada (m/s) int. vento (m/s) , ,5023,062522, ,343758,671886, , ,375022, , ,56259,433597, , ,125022, , ,453139,199226, , ,87521, ,234387,031255, , ,75022,87521, ,343756,738285, , ,125022, , ,890635,976564, , ,125022, , ,6256,269535, , ,687522,521,108494,921885,449224, , ,375342,187522,520, ,507814, , ,2522, , ,578139,726566, , , ,312522,520, ,015639,140636, , ,751195,312522,520, ,3758,203136, , ,51195,312522,520, ,259,257817, , ,312522,521, , ,605478, , , ,312522,312520, ,437510,605478, , , ,312522,12520, ,2510,195318, , ,251195,312521,937520, ,437510,839848, , ,312521, , , ,259, , , ,312521, , , ,597669, , , ,812520, , ,363289, , ,25019, , ,37512,128919, , ,5019,12519, , ,136728, , ,125018,937519, , , , , ,625018,7519, , ,949229,84375

9FEV14 Erro = 0,529

9FEV14 diamêsanohorapressão atm. (hPa) temp. ar (°C) irradiance (W/m²) tsm (sup) (°C) tsm (10m) (°C) dir. vento (°) int. rajada (m/s) int. vento (m/s) , ,75017, , , ,664068, , ,375017, , , ,007818, , ,25017,812517,783276, ,007818, , ,375017, , ,312511,777349, , ,812517, ,312514, , , ,25017,62517, , ,542979, , ,62517, , ,308598, , ,062517, , , ,488288, , ,545017, , , ,429698, , , , ,421889,902347, , ,51195,312517,812517, ,796888,847667, , ,312518, , ,312510,605478, , , , ,792976, , ,51195,312518,187518, ,140639,199227, , ,312518, , ,812512,304699, , ,751195,312518, , , ,839848, , ,751195,312518,37518, ,62511,308598, , ,251195,312518,187518, , , , , ,625890,62518, , , , , ,25403,12518,562518, , , , , , , , , , , ,75018, ,049882, ,070329, , ,5018, , , ,074228, , ,562518, , ,539069,72656

11FEV14 Erro = 0,5

11FEV14 diamêsano hor a pressão atm. (hPa) temp. ar (°C) irradiance (W/m²) tsm (sup) (°C) tsm (10m) (°C) dir. vento (°) int. rajada (m/s) int. vento (m/s) , , , , ,484387, , ,75017,812517, ,906259,140637, , ,5017,812517, ,1259,550787, , ,125017, ,531257,968756, ,062522, , ,859388,085946, , ,375018, , ,671888,554696, , ,875018, , ,546885,800784, , ,125135,937518,562518, ,328136,269535, , ,875871,87518,562518, ,109385,742193, , ,875637,518,7518, ,781257,675785, , , ,312518, , ,765636,679695, , , ,312519, , ,984387,56, , , ,312519, , ,093758,730477, , , ,312519,12518, ,796887,910166, , , ,312519,312518, ,234388,027346, ,062522,751195,312519, , ,31258,144536, , , ,312519, , ,203138,906257, , ,125689,062519, , , ,195318, , ,25801,562519,518, , ,894539, , ,875173,437519,87519, , ,718759, , ,5019, , ,3757, , ,375019, , ,593759,550787, , ,75019, , ,859389,609387, , ,125018, , ,453138,964856,76758

Entradas COARE  ur = wind speed [m/s] measured at height zr [m]  Ta = air temperature [C] measured at height zt [m]  rh = relative humidity [%] measured at height zq [m]  Pa = air pressure [mb]  Ts = sea surface temperature [C]  sal = salinity [psu (PSS-78)] (optional - only needed for cool-skin)  dlw = downwelling (INTO water) longwave radiation [W/m^2] (optional - only needed for cool-skin)  dsw = measured insolation [W/m^2](optional - only needed for cool-skin)  nsw = net shortwave radiation INTO the water [W/m^2](optional - only needed for cool-skin)

Fenômenos (fev2014)

Ta, Tsup e T10 (fev2014)

janeiro fevereiro marco abril

maio junho julho agosto

setembro outubro novembro dezembro

Janeiro 2014

Abril 2014

Setembro 2014

R R 12 FEV2014 Hs-Hl

JAN14

Bóia Santa Catarina

Bóia Cabo Frio

TSM nas boias

31MAR2015 GOES-13 & StaCatarina

14SET2015 GOES-13 & StaCatarina MODISHoraTSM A16:5521,565 T12:4021,585

15NOV2015 Sta.Catarina 15/nov/15MODISHoraTSM A17:1022,995

22JUL2014 Arraial

8JAN2014 Arraial R MODISHoraTSM T13:1519,88

9JAN14 MODIS A&T R

MODIS A&T e Boia Arraial (AGO2014)

MODIS A&T e Boia Arraial (SET2014)

AGO e SET2014

22JUL14 GOES-13

22JUL14 MODIS A&T MODIS A 16:30

01FEV2014 A&T MODIS A 16:45 MODIS T 01:30

20FEV MODIS A&T MODIS T 12:55

7FEV14 MODIS A&T MODIS T 13:25 MODIS A 04:00

27FEV2014

27FEV2014 G0ES K 296K

Consolidação dos erros gerados por 270 estimativas de TSM na posição da bóia de Arraial do Cabo, pelos sensores MODIS Terra &Aqua, em funcao do gradiente (ta-tsup) e a direção do vento

ERRO HlHsHl/Hstatsupta-tsup erro<0-0,48-28,6715,55-1,8421,9420,721,30 erro>00,845,3537,740,1421,9418,982,99 0<erro<0,50,23-19,4221,74-0,8922,0020,171,89 0,5<erro<10,757,0940,550,1721,9318,763,18 1<erro<1,51,2740,8759,660,6921,8617,424,44 0<erro<10,42-9,5028,78-0,3321,9719,642,38 erro>1 (dia)1,7034,0553,890,6322,2018,224,00 erro>1 (noite)1,5825,6055,660,4621,3116,774,54 erro>11,6634,2955,210,6221,8917,714,18 erro>1,51,9229,7852,150,5721,9117,924,01 tsup<180,8947,0564,500,7321,2616,494,80 tsup>190,08-40,049,02-4,4422,4421,600,94 tsup 01,1744,6565,250,6821,2016,454,78 Baseado na comparação de 270 eventos de coleta de TSM pelos sensores MODIS nos satélites Terra & Aqua. Em cada célula da planilha, a média.

Erro e gradiente

2014Media mensal Terra Aqua Boia (2015) StaCatarinaVitoriaStaCatarinaVitoriaStaCatarina jan26, , , , ,85281 fev27, , , , ,51027 mar25, , , , ,2928 abr24, , , , ,14032 mai23, , , , ,42971 jun23, , , , ,75916 jul21, , , ,567421,31195 ago20, , , , ,53416 set20, , , , ,36372 out22, , , , ,24683 nov23, , , , dez24, , , ,