Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.

Slides:



Advertisements
Similar presentations
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Advertisements

NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
COSMOLOGY AS A TOOL FOR PARTICLE PHYSICS Roberto Trotta University of Oxford Astrophysics & Royal Astronomical Society.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
CMB as a physics laboratory
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Quiz 4 Distribution of Grades: No Curve. The Big Bang Hubble expansion law depends on the amount of matter and energy (both are equivalent!) in the Universe;
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
Early times CMB.
Neutrinos and the large scale structure
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University COSMO, 14 SEPTEMBER 2012 e    
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
Cosmology and Dark Matter I: Einstein & the Big Bang by Jerry Sellwood.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
The Theory/Observation connection lecture 2 perturbations Will Percival The University of Portsmouth.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
C. W. Kim KIAS The Johns Hopkins University Neutrino Physics and Cosmology SDSS-KSG Workshop.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
NEUTRINO DECOUPLE as Hot DM Neutrinos are kept in thermal equilibrium by the creating electron pairs and scattering (weak interaction): This interaction.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
The Cosmic Microwave Background
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
2. April 2007J.Wicht : Dark Matter2 Outline ● Three lecturers spoke about Dark Matter : – John Ellis, CMB and the Early Universe – Felix Mirabel, High-Energy.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Dark Matter in the Universe physics beyond the standard model
Neutrino Masses in Cosmology
Precision cosmology and neutrinos
Hunting for Cosmological Neutrino Background (CvB)
Cosmology from Large Scale Structure Surveys
NEUTRINOS AND BBN ( & THE CMB) Gary Steigman
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
CMB Anisotropy 이준호 류주영 박시헌.
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν

Cosmological aspects of neutrinos 2nd & 3rd lectures Degenerate relic neutrinos (Neutrino asymmetries) Massive neutrinos as Dark Matter Effects of neutrino masses on cosmological observables Bounds on m ν from CMB, LSS and other data Bounds on the radiation content (N ν ) Future sensitivities on m ν and N ν from cosmology

Degenerate relic neutrinos (relic neutrino asymmetries)

T~MeV t~sec Primordial Nucleosynthesis Decoupled neutrinos (Cosmic Neutrino Background) Neutrinos coupled by weak interactions

Equilibrium thermodynamics Particles in equilibrium when T are high and interactions effective T~1/ a(t) Distribution function of particle momenta in equilibrium Thermodynamical variables VARIABLE RELATIVISTIC NON REL. BOSEFERMI

T~MeV t~sec Primordial Nucleosynthesis Neutrinos coupled by weak interactions    /T

Relic neutrino asymmetries Raffelt Fermi-Dirac spectrum with temperature T and chemical potential  More radiation

Degenerate Big Bang Nucleosynthesis If   0, for any flavor  (  )>  (0)   4 He Plus the direct effect on n  p if  ( e )  0  e >0   4 He Pairs  (  e,  N ) that produce the same observed abundances for larger  B Kang & Steigman 1992

Hansen et al 2001Hannestad 2003 Combined bounds BBN & CMB-LSS In the presence of flavor oscillations ? Degeneracy direction (arbitrary ξ e )

Flavor neutrino oscillations in the Early Universe Density matrix Mixing matrix Expansion of the Universe Charged lepton background (2nd order contribution) Collisions (damping) Neutrino background: diagonal and off-diagonal potentials Dominant term: Synchronized Neutrino Oscillations

BBN Evolution of neutrino asymmetries Effective flavor equilibrium (almost) established  Dolgov et al 2002 Wong 2002 Abazajian et al 2002 Serpico & Raffelt 2005

Massive Neutrinos and Cosmology

Relic neutrinos influence several cosmological epochs T < eVT ~ MeV Formation of Large Scale Structures LSS Cosmic Microwave Background CMB Primordial Nucleosynthesis BBN No flavour sensitivity N eff & m ν ν e vs ν μ,τ N eff

We know that flavour neutrino oscillations exist From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos Evidence of Particle Physics beyond the Standard Model !

Mixing Parameters... From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos Mixing matrix U Maltoni, Schwetz, Tórtola, Valle, NJP 6 (2004) 122 [hep-ph/ v5]

Mixing Parameters... From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos Maltoni, Schwetz, Tórtola, Valle, NJP 6 (2004) 122 [hep-ph/ v5]

... and neutrino masses Data on flavour oscillations do not fix the absolute scale of neutrino masses eV atm solar NORMAL INVERTED eV m0m0 What is the value of m 0 ?

Direct laboratory bounds on m ν Searching for non-zero neutrino mass in laboratory experiments Tritium beta decay: measurements of endpoint energy m( ν e ) < 2.2 eV (95% CL) Mainz Future experiments (KATRIN) m( ν e ) ~ eV Neutrinoless double beta decay: if Majorana neutrinos experiments with 76 Ge and other isotopes: Im ee I < 0.4h N eV

Absolute mass scale searches Neutrinoless double beta decay < eV Tritium β decay < 2.2 eV < eV Cosmology

Evolution of the background densities: 1 MeV → now photons neutrinos cdm baryons Λ m 3 =0.05 eV m 2 =0.009 eV m 1 ≈ 0 eV Ω i = ρ i /ρ crit

The Cosmic Neutrino Background Number density Energy density Massless Massive m ν >>T Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species At present 112 per flavour Contribution to the energy density of the Universe

Neutrinos as Dark Matter Neutrinos are natural DM candidates They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter First structures to be formed when Universe became matter -dominated Ruled out by structure formation CDM Neutrino Free Streaming Φ b, cdm ν

Neutrinos as Dark Matter Neutrinos are natural DM candidates They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter First structures to be formed when Universe became matter -dominated HDM ruled out by structure formation CDM

Neutrinos as Hot Dark Matter Effect of Massive Neutrinos: suppression of Power at small scales

Neutrinos as Hot Dark Matter Effect of Massive Neutrinos: suppression of Power at small scales

Neutrinos as Hot Dark Matter Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation (combined with other cosmological data)

Cosmological observables accélération décélération lente décélération rqpide accélération décélération lente décélération rqpide inflationradiationmatièreénergie noire acceleration slow deceleration fast deceleration ? inflation RD (radiation domination)MD (matter domination) dark energy domination

Power Spectrum of density fluctuations Matter power spectrum is the Fourier transform of the two-point correlation function Field of density Fluctuations

Galaxy Redshift Surveys SDSS 2dFGRS ~ 1300 Mpc

Cosmological observables: LSS accélération décélération lente décélération rqpide accélération décélération lente décélération rqpide inflationradiationmatièreénergie noire acceleration slow deceleration fast deceleration ? inflation RD (radiation domination)MD (matter domination) dark energy domination 0<z<0.2 matter power spectrum P(k)  galaxy redshift surveys linear non-linear δρ/ρ<1 δρ/ρ ~ 1 60 Mpc bias uncertainty Distribution of large-scale structures at low z

Power spectrum of density fluctuations Bias b 2 (k)=P g (k)/P m (k) k ma x SDSS 2dFGRS Non-linearity

Cosmological observables : LSS accélération décélération lente décélération rqpide accélération décélération lente décélération rqpide inflationradiationmatièreénergie noire acceleration slow deceleration fast deceleration ? inflation RD (radiation domination)MD (matter domination) dark energy domination 2<z<3 Lyman- α forests in quasar spectra matter power spectrum P(k)  various systematics Distribution of large-scale structures at medium z

Neutrinos as Hot Dark Matter Effect of Massive Neutrinos: suppression of Power at small scales Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation (combined with other cosmological data) ffνffν

Structure formation after equality baryons and CDM experience gravitational clustering

growth of  /  (k,t) fixed by « gravity vs. expansion » balance    a Structure formation after equality baryons and CDM experience gravitational clustering

neutrinos experience free-streaming with v = c or /m Structure formation after equality baryons and CDM experience gravitational clustering

neutrinos cannot cluster below a diffusion length  = ∫ v dt < ∫ c dt Structure formation after equality baryon and CDM experience gravitational clustering baryons and CDM experience gravitational clustering neutrinos experience free-streaming with v = c or /m

o neutrinos cannot cluster below a diffusion length  = ∫ v dt < ∫ c dt for (2  /k) <, free-streaming supresses growth of structures during MD    a 1-3/5 f with f =   /  m ≈ (  m )/(15 eV) Structure formation after equality baryon and CDM experience gravitational clustering baryons and CDM experience gravitational clustering neutrinos experience free-streaming with v = c or /m

J.Lesgourgues & SP, Phys Rep 429 (2006) 307 [astro-ph/ ] Structure formation after equality  cdm bb   metric a Massless neutrinos

J.Lesgourgues & SP, Phys Rep 429 (2006) 307 [astro-ph/ ] Structure formation after equality  cdm bb   metric a 1-3/5f a Massive neutrinos f ν =0.1

Effect of massive neutrinos on P(k) Observable signature of the total mass on P(k) : P(k) massive P(k) massless various f f ν Lesgourgues & SP, Phys. Rep. 429 (2006) 307

Cosmological observables: CMB accélération décélération lente décélération rqpide accélération décélération lente décélération rqpide inflationradiationmatièreénergie noire acceleration slow deceleration fast deceleration ? inflation RD (radiation domination)MD (matter domination) dark energy domination z≈1100  photon power spectra CMB temperature/polarization anisotropies Anisotropies of the Cosmic Microwave Background

CMB TT DATA Multipole Expansion Map of CMBR temperature Fluctuations Angular Power Spectrum

CMB TT DATA Multipole Expansion Map of CMBR temperature Fluctuations Angular Power Spectrum

CMB Polarization DATA TT TE EE BB WMAP 3

Effect of massive neutrinos on the CMB spectra 1)Direct effect of sub-eV massive neutrinos on the evolution of the baryon-photon coupling is very small 2)Impact on CMB spectra is indirect: non-zero Ω ν today implies a change in the spatial curvature or other Ω i. The background evolution is modified Ex: in a flat universe, keep Ω Λ +Ω cdm +Ω b +Ω ν =1 constant

Effect of massive neutrinos on the CMB spectra Problem with parameter degeneracies: change in other cosmological parameters can mimic the effect of nu masses

Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark

End of 2nd lecture