1. Ion Proton I well Ion 300 series well 454 Titanium well.

Slides:



Advertisements
Similar presentations
In Silico Primer Design and Simulation for Targeted High Throughput Sequencing I519 – FALL 2010 Adam Thomas, Kanishka Jain, Tulip Nandu.
Advertisements

The State of the Art - Ion RoadMap Update
Combining semiconductor-based sequencing with amplicon-based cancer gene panels: A rapid next-gen approach to clinical cancer genotyping. Christopher L.
Next-generation sequencing
Peter Tsai, Bioinformatics Institute.  University of California, Santa Cruz (UCSC)  A rapid and reliable display of any requested portion of genomes.
Targeted Data Introduction  Many mapping, alignment and variant calling algorithms  Most of these have been developed for whole genome sequencing and.
The 454 and Ion PGM at the Genomics Core Facility Dr. Deborah Grove, Director for Genetic Analysis Genomics Core Facility Huck Institutes of the Life Sciences.
Cancer Treatment from the DNA Perspective
NHGRI/NCBI Short-Read Archive: Data Retrieval Gabor T. Marth Boston College Biology Department NCBI/NHGRI Short-Read.
Next Generation DNA Sequencing Platforms: Evolving Tools for
University of Oklahoma Genome Center4/14/12.
Pathways Database System: An Integrated System For Biological Pathways L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu, G. Schaeffer, M. Tasan.
Presented by Karen Xu. Introduction Cancer is commonly referred to as the “disease of the genes” Cancer may be favored by genetic predisposition, but.
MCB 317 Genetics and Genomics MCB 317 Topic 10, part 1 A Story of Transcription.
Tag-It TM Mutation Detection Kit for CFTR 70+6 Lorraine Fernandez August 6, 2008.
Dr Katie Snape Specialist Registrar in Genetics St Georges Hospital
Considerations for Analyzing Targeted NGS Data Introduction Tim Hague, CTO.
Epigenome 1. 2 Background: GWAS Genome-Wide Association Studies 3.
GeVab: Genome Variation Analysis Browsing Server Korean BioInformation Center, KRIBB InCoB2009 KRIBB
Genomics – Next-Gen sequencing and Microarrays
Data Analysis Summary. Elephant in the room General Comments General understanding that informatics is integral in medical sequencing and other –omics.
Qai Gordon and Maddy Marchetti. What is Polymerase Chain Reaction? Polymerase Chain Reaction ( PCR ) is a process that amplifies small pieces of DNA to.
Sequencing at the speed of life. Simple is beautiful.
Genome databases and webtools for genome analysis Become familiar with microbial genome databases Use some of the tools useful for analyzing genome Visit.
Construction of Substitution Matrices
HaloPlexHS Get to Know Your DNA. Every Single Fragment.
File 5 MOUSE sequences used in target gene promoter regions to detect NFATc1 protein binding by ChIP.
Accessing and visualizing genomics data
A brief guide to sequencing Dr Gavin Band Wellcome Trust Advanced Courses; Genomic Epidemiology in Africa, 21 st – 26 th June 2015 Africa Centre for Health.
Recent Advances in Genomic Science Julian Sampson Institute of Medical Genetics, Cardiff.
HRM Assay and Optimization 1. DNA Quality 2. Amplicon LengthAmplicon  lengths of 100–300 bp 3. Primer Selection 4. Dye Selection 5. MgCl2 Concentration.
1 Finding disease genes: A challenge for Medicine, Mathematics and Computer Science Andrew Collins, Professor of Genetic Epidemiology and Bioinformatics.
The world leader in serving science Sanger sequencing using Ion AmpliSeq™ primers and libraries Stephen Jackson, Ph.D. Associate Director, Product Applications.
A comparison of somatic mutation callers in breast cancer samples and matched blood samples THOMAS BRETONNET BIOINFORMATICS AND COMPUTATIONAL BIOLOGY UNIT.
The world leader in serving science Andy Felton Ph.D. Vice President Marketing & Product Management Clinical Sequencing Division Personalized Medicine.
Galaxy for analyzing genome data Hardison October 05, 2010
Virginia Commonwealth University
Interpreting exomes and genomes: a beginner’s guide
Short Read Sequencing Analysis Workshop
Week-6: Genomics Browsers
Cancer Genomics Core Lab
Ion Torrent: Open, Accessible, Enabling
DNA Sequencing -sayed Mohammad Amin Nourion -A’Kia Buford
Discovery of Multiple Differentially Methylated Regions
University of Pittsburgh
Content and Labeling of Tests Marketed as Clinical “Whole-Exome Sequencing” Perspectives from a cancer genetics clinician and clinical lab director Allen.
DNA Technology.
A Targeted High-Throughput Next-Generation Sequencing Panel for Clinical Screening of Mutations, Gene Amplifications, and Fusions in Solid Tumors  Rajyalakshmi.
Assessing Copy Number Alterations in Targeted, Amplicon-Based Next-Generation Sequencing Data  Catherine Grasso, Timothy Butler, Katherine Rhodes, Michael.
A Method to Evaluate the Quality of Clinical Gene-Panel Sequencing Data for Single- Nucleotide Variant Detection  Chung Lee, Joon S. Bae, Gyu H. Ryu, Nayoung.
Validation of a Next-Generation Sequencing Pipeline for the Molecular Diagnosis of Multiple Inherited Cancer Predisposing Syndromes  Paula Paulo, Pedro.
Sahar Al Seesi University of Connecticut CANGS 2017
Fig. S3 Human genome consensus coding sequence
Targeted, High-Depth, Next-Generation Sequencing of Cancer Genes in Formalin- Fixed, Paraffin-Embedded and Fine-Needle Aspiration Tumor Specimens  Andrew.
Improving Mutation Screening in Patients with Colorectal Cancer Predisposition Using Next-Generation Sequencing  Jean-Marc Rey, Vincent Ducros, Pascal.
Molecular Diagnosis of Autosomal Dominant Polycystic Kidney Disease Using Next- Generation Sequencing  Adrian Y. Tan, Alber Michaeel, Genyan Liu, Olivier.
Ion Torrent Semiconductor Sequencing
Copy-number alterations in an archival breast cancer sample.
Rapid Molecular Profiling of Myeloproliferative Neoplasms Using Targeted Exon Resequencing of 86 Genes Involved in JAK-STAT Signaling and Epigenetic Regulation 
Volume 21, Issue 8, Pages (August 2014)
PIK3CA Hotspot Mutation Scanning by a Novel and Highly Sensitive High-Resolution Small Amplicon Melting Analysis Method  Panagiotis A. Vorkas, Nikoleta.
Supplemental Figure 3 A B C T-DNA 1 2 RGLG1 2329bp 3 T-DNA 1 2 RGLG2
Mapping Global Histone Acetylation Patterns to Gene Expression
Volume 16, Issue 8, Pages (August 2016)
The Right Tool for the Job: Two Platforms for Targeted DNA Sequencing
Clinical Validation of a Next-Generation Sequencing Screen for Mutational Hotspots in 46 Cancer-Related Genes  Rajesh R. Singh, Keyur P. Patel, Mark J.
TS Tumor Panel (15 Genes) Overview
Genomic & RNA Profiling Core Facility
Fig. 3 Genome editing of the MSTN gene.
Presentation transcript:

1

Ion Proton I well Ion 300 series well 454 Titanium well

3 TCTTCTTCTGGCTGCCAGCACGCCGGTTGTAGTGGGATCTCTTCGCGATC |||||||||||||||||||||||||||||||||||||||||||||||||| TCTTCTTCTGGCTGCCAGCACGCCGGTTGTAGTGGGATCTCTTCGCGATC AAACGCCAGATCACCCCCGTTAACCACTTCAGAACCGTGGGTGATGACCT ||||||||||||||||||||||||||||||||||||||||||||||+||| AAACGCCAGATCACCCCCGTTAACCACTTCAGAACCGTGGGTGATG-CCT TTGAAATCGAATCAGGTTGGTATCGCACAGATGCGACGGCACCACATTCT |||||||||||+|||||||||||||||||||||||||||||||||||||| TTGAAATCGAA-CAGGTTGGTATCGCACAGATGCGACGGCACCACATTCT GCATCGCGCTGAACATCGTCTCGATACGCCCTGGATAACGTTTATCCCAG |||||||||||||||||||||||||||||||||||||||||||||||||| GCATCGCGCTGAACATCGTCTCGATACGCCCTGGATAACGTTTATCCCAG TCA ||| TCA Base Q20 Reads on Ion Proton™ I Chip

100 base200 base 300 base400 base

CGCTAAGTAATATTCGCCCCGTTCACACGATTCCTCTGTAGTTCAGTCGGTAGAACGGCGGACTGTTAATCCGTATGTCACTGGTTCGAGTCCAGTCAGA |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| CGCTAAGTAATATTCGCCCCGTTCACACGATTCCTCTGTAGTTCAGTCGGTAGAACGGCGGACTGTTAATCCGTATGTCACTGGTTCGAGTCCAGTCAGA GGAGCCAAATTCTAAAAATTCGCTTTTTTAGCGCAATGTCACTGACCTTAGTTGAACATTGTTTTTTAACGGATAGCGGGTTTTTAACATCTTAAGCGCC |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| GGAGCCAAATTCTAAAAATTCGCTTTTTTAGCGCAATGTCACTGACCTTAGTTGAACATTGTTTTTTAACGGATAGCGGGTTTTTAACATCTTAAGCGCC CTCGACCTTTATGGTTGAGGGCGTTTTGCTATGAACGCCATCACCATTTTCCCCTCGATTATAAAACTTGAGTTATTCAGTAGTCTCCCCTCTTGCAACT |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| CTCGACCTTTATGGTTGAGGGCGTTTTGCTATGAACGCCATCACCATTTTCCCCTCGATTATAAAACTTGAGTTATTCAGTAGTCTCCCCTCTTGCAACT CACACCCAAAACTGCCTAACGAAAAGTTATTAATTTTCAATCATATTGCTATCAGTATTTACATTTTTTCGCTGTGCTAGAAAGGGCGCATTTATGTTAG |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| CACACCCAAAACTGCCTAACGAAAAGTTATTAATTTTCAATCATATTGCTATCAGTATTTACATTTTTTCGCTGTGCTAGAAAGGGCGCATTTATGTTAG CTCGTTCAGGGAAGGTAAGCATGGCTACGAAGAAGAGAAGTGGAGAAGAAATAAATGACCGACAAATATTATGCGGGATGGGAATTAAACTACGCCGCTT |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| CTCGTTCAGGGAAGGTAAGCATGGCTACGAAGAAGAGAAGTGGAGAAGAAATAAATGACCGACAAATATTATGCGGGATGGGAATTAAACTACGCCGCTT AACTGCGGGTATCTGTCTGATAACT ||||||||||||||||||||||||| AACTGCGGGTATCTGTCTGATAACT

RED = “0” background trace (no signal as nucleotide flows in) BLUE = “1“ signal trace (positive signal on top of background) t=0 t=1.0 sec pH=8.0 pH= pH units Differential signal: 0.02 pH units for Single base extension, proportional For multiple bases 100 pH samples per second No incorporation (“0”) incorporation (“1”)

Confidential and Proprietary—DO NOT DUPLICATE 7

8

9 (a) (b)

10 Ion Proton™ OneTouch System Ion Proton™ SequencerProton™ Torrent Server Ion Kits

12

The Torrent Suite SDK Guide is available at /DOC /DOC-1556 And additional information at it.hosted.jivesoftware.com/docs/DOC Torrent Suite Virtual machines are available for developer prototyping at – Penguin Computing: – Amazon AMI: search “ion-torrent” or use AMI-e94d9c80 at Amazon Web Services – Download to run locally – Grants of free time on Amazon Cloud for plug-in developers Torrent Suite Virtual Machine

AmpliSeq™ Assay Process

Ion AmpliSeq™ Comprehensive Cancer Panel 409 genes, ~16000 amplicons 4-pool design: > ~4,000 amplicons per pool DNA input: 40ng (10ng/ pool) FFPE compatible ~ 350x average depth of coverage using a 318 chip Literature and database review COSMIC mutation frequency >2% Genes cited in tumors of multiple types PharmGKB Pathways Signaling cascades Apoptosis DNA repair NF-kappaβ-related transcription regulators Inflammatory response and growth factor genes AmpliSeq™ Cancer Mutation Hotspot Panel (46 genes)

Ion AmpliSeq™ CCP Performance Uniformity: % of bases covered at >20% of the mean depth of coverage Coverage Uniformity Coverage Specificity Coverage Depth (318 chip) Specificity: % of bases that are Within the targeted regions Depth: average coverage across all target bases, for a 318 chip run

AmpliSeq Comprehensive Cancer Panel 17Confidential and Proprietary—DO NOT DUPLICATE Majority of bases are ≥ Q30 % Q % Most Common Read Length~130 bp Mean Raw Accuracy (1X)99.2%

Ion AmpliSeq™ Inherited Disease Panel 325 genes, ~10500 amplicons Coding exons of 325 genes 3-pool design: ~3,500 primers per pool 30ng DNA input (10ng per pool) Standard amplicon size (average 197 bases) 245 disorders 87 genes Neuromuscular 159 disorders 62 genes Heart disease 193 disorders 75 genes Developmental 46 disorders 28 genes Metabolic 210 disorders 73 genes Other (inherited cancer, blindness, etc)

Ion AmpliSeq™ IDP Performance Uniformity: % of bases covered at >20% of the mean depth of coverage Coverage Uniformity Coverage Specificity Coverage Depth (316 chip) Specificity: % of bases that are Within the targeted regions Depth: average coverage across all target bases, for a 316 chip run

AmpliSeq Inherited Disease Panel 20Confidential and Proprietary—DO NOT DUPLICATE Majority of bases are ≥ Q30 % Q % Most Common Read Length~180 bp Mean Raw Accuracy (1X)99.1%

Ampliseq™ Designer 1.2 May 2012 Number of Pools 2—4 (2 pools typical) Cumulative target sequence up to 1 Mb Primer pool size24 to 3072 amplicons in one tube User Interface Interface Enhancements Integration with UCSC browser Target Design Rate *> 85% Coverage Uniformity *> 85% On Target Bases *> 80% Assay design results < 2.5 hours for 10kb < 48 hours up to 250kb Oligo synthesis + Deliveries4 weeks

ioncommunity.lifetechnologies.com

23 Ion Community Rate of Growth *94% growth in last 6 months *135% growth in last 6 months *55% growth in last 6 months

Ion Torrent 318 (Paired End) PerformanceNew May 2012 Benchmark 200 b AQ20 unfiltered 5.832M AQ20 bases2.07Gb E. coli 100%442.5X US$1M for making 2-fold improvement

SFF Compression Challenge Two Weeks 10X Faster 60% Better Compression DAT Compression Challenge Two Weeks Same Speed 20% Better Compression Smith-Waterman (SW) Alignment Challenge: Results: 75 competitors Two week Competition, $5000 prize 5.5x speed improvement 36k SW per sec.  203k SW per sec. Basecaller Challenge Two Weeks 3.5x faster code Maintains call accuracy