Cryptographic Key Management for Smart Power Grids BY ADITYA KANDULA DEVASIA THOMAS.

Slides:



Advertisements
Similar presentations
Gone in 360 Seconds: Hijacking with Hitag2
Advertisements

Efficient Kerberized Multicast Olga Kornievskaia University of Michigan Giovanni Di Crescenzo Telcordia Technologies.
Authenticating Users. Objectives Explain why authentication is a critical aspect of network security Explain why firewalls authenticate and how they identify.
UCAIug HAN SRS v2.0 Summary August 12, Scope of HAN SRS in the NIST conceptual model.
Chapter 19: Network Management Business Data Communications, 5e.
Efficient Public Key Infrastructure Implementation in Wireless Sensor Networks Wireless Communication and Sensor Computing, ICWCSC International.
Module 5: TLS and SSL 1. Overview Transport Layer Security Overview Secure Socket Layer Overview SSL Termination SSL in the Hosted Environment Load Balanced.
VPN: Virtual Private Network Presented by: Germaine Bacon Lizzi Beduya Betty Huang Jun Mitsuoka Juliet Polintan.
Applications of Wireless Sensor Networks in Smart Grid Presented by Zhongming Zheng.
Access Control Methodologies
Chapter 14 From Cryptography and Network Security Fourth Edition written by William Stallings, and Lecture slides by Lawrie Brown, the Australian Defence.
LANs and WANs. 2 Chapter Contents Section A: Network Building Blocks Section B: Wired Networks Section C: Wireless Networks Section D: Using LANs Section.
1 © NOKIA Presentation_Name.PPT / DD-MM-YYYY / Initials Company Confidential The Internet offers no inherent security services to its users; the data transmitted.
Using Cryptographic ICs For Security and Product Management Misconceptions about security Network and system security Key Management The Business of Security.
Cyber Security and Key Management Models Smart Grid Networks The Network System Key Management and Utilization Why Hardware Security Christopher Gorog,
1 ITC242 – Introduction to Data Communications Week 12 Topic 18 Chapter 19 Network Management.
Lesson 11-Virtual Private Networks. Overview Define Virtual Private Networks (VPNs). Deploy User VPNs. Deploy Site VPNs. Understand standard VPN techniques.
A Study of Mobile IP Kunal Ganguly Wichita State University CS843 – Distributed Computing.
CS 550 Amoeba-A Distributed Operation System by Saie M Mulay.
Security Management IACT 918 July 2004 Gene Awyzio SITACS University of Wollongong.
ISA 3200 NETWORK SECURITY Chapter 10: Authenticating Users.
Security in Wireless Sensor Networks Perrig, Stankovic, Wagner Jason Buckingham CSCI 7143: Secure Sensor Networks August 31, 2004.
FIREWALLS & NETWORK SECURITY with Intrusion Detection and VPNs, 2 nd ed. 10 Authenticating Users By Whitman, Mattord, & Austin© 2008 Course Technology.
Advanced Metering Infrastructure
Faten Yahya Ismael.  It is technology creates a network that is physically public, but virtually it’s private.  A virtual private network (VPN) is a.
doc.: IEEE <doc#> ZigBee Technical Overview
Key Management in Cryptography
Copyright Microsoft Corp Ramnish Singh IT Advisor Microsoft Corporation Secure Remote Access Challenges, Choices, Best Practices.
Wireless Network Security. Wireless Security Overview concerns for wireless security are similar to those found in a wired environment concerns for wireless.
MCTS GUIDE TO MICROSOFT WINDOWS 7 Chapter 14 Remote Access.
Network Topologies.
Chapter 10: Authentication Guide to Computer Network Security.
1 Kyung Hee University Prof. Choong Seon HONG Network Control.
Radio Frequency Identification By Bhagyesh Lodha Vinit Mahedia Vishnu Saran Mitesh Bhawsar.
70-294: MCSE Guide to Microsoft Windows Server 2003 Active Directory Chapter 9: Active Directory Authentication and Security.
Lessons Learned in Smart Grid Cyber Security
SMART METERING SOLUTIONS TO SHAPE OUR ENERGY FUTURE Empowering the Customer Experience Marketing Executives Conference Cranwell Resort Lenox, Massachusetts.
ZigBee Based Smart Meter Networks Aniqua Z. Baset CSCE 813 Internet Security, Spring 2014.
MOBILE AD-HOC NETWORK(MANET) SECURITY VAMSI KRISHNA KANURI NAGA SWETHA DASARI RESHMA ARAVAPALLI.
Remote Access Chapter 4. Learning Objectives Understand implications of IEEE 802.1x and how it is used Understand VPN technology and its uses for securing.
SSL / TLS in ITDS Arun Vishwanathan 23 rd Dec 2003.
Configuring and Troubleshooting Identity and Access Solutions with Windows Server® 2008 Active Directory®
Computer Concepts 2014 Chapter 5 Local Area Networks.
Department of Electronic Engineering City University of Hong Kong EE3900 Computer Networks Introduction Slide 1 A Communications Model Source: generates.
Network Security Lecture 9 Presented by: Dr. Munam Ali Shah.
FIREWALLS Vivek Srinivasan. Contents Introduction Need for firewalls Different types of firewalls Conclusion.
Chapter 23 Internet Authentication Applications Kerberos Overview Initially developed at MIT Software utility available in both the public domain and.
SECURITY SCHEMES FOR AMI Jincheol Kim et al. – Korea – Distribution business and impact of regulation – 0845 Jincheol Kim, Seongji Ahn, Youngeok Kim Jongman.
NETWORK COMPONENTS Assignment #3. Hub A hub is used in a wired network to connect Ethernet cables from a number of devices together. The hub allows each.
WEP Protocol Weaknesses and Vulnerabilities
Middleware for Secure Environments Presented by Kemal Altıntaş Hümeyra Topcu-Altıntaş Osman Şen.
11 SECURING NETWORK COMMUNICATION Chapter 9. Chapter 9: SECURING NETWORK COMMUNICATION2 OVERVIEW  List the major threats to network communications. 
Frankfurt (Germany), 6-9 June 2011 Iiro Rinta-Jouppi – Sweden – RT 3c – Paper 0210 COMMUNICATION & DATA SECURITY.
Lecture 24 Wireless Network Security
Private Branch eXchange (PBX)
Azam Supervisor : Prof. Raj Jain
Database Security Cmpe 226 Fall 2015 By Akanksha Jain Jerry Mengyuan Zheng.
Lecture 11 Overview. Digital Signature Properties CS 450/650 Lecture 11: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Sem 2v2 Chapter 5 Router Startup and Setup. A router initializes by loading the bootstrap, the operating system, and a configuration file. If the router.
Erik Nicholson COSC 352 March 2, WPA Wi-Fi Protected Access New security standard adopted by Wi-Fi Alliance consortium Ensures compliance with different.
Securing Access to Data Using IPsec Josh Jones Cosc352.
Security of the Internet of Things: perspectives and challenges
A Security Framework for ROLL draft-tsao-roll-security-framework-00.txt T. Tsao R. Alexander M. Dohler V. Daza A. Lozano.
Myongji University HMCL
Keimyung University 1 Network Control Hong Taek Ju College of Information and Communication Keimyung University Tel:
Cyber Security in Smart Grids BY ADITYA KANDULA DEVASIA THOMAS.
Santa Clara 2008 Smart Meters and Home Automation Ember Corporation Bob Gohn VP Marketing
History and Implementation of the IEEE 802 Security Architecture
History and Implementation of the IEEE 802 Security Architecture
Presentation transcript:

Cryptographic Key Management for Smart Power Grids BY ADITYA KANDULA DEVASIA THOMAS

Introduction  The smart power grid promises to improve efficiency and reliability of power delivery.  Smart meters provides an economical way of measuring energy consumption.  We will concentrate on the design of the smart meter and its communication links using ZigBee technology and the communication between the smart meter and the collector node, with emphasis on security attributes.

Overview  Approaches for managing encryption keys in AMI and main security issues.  A high-level description of the organization of the AMI as this is crucial in order to understand the main requirements for key management.  An overview of communication protocols and standards adopted or proposed for AMIs, followed by a discussion about security of smart meters and networks, including ZigBee.  We then discuss security threats and finally outline some initial research ideas.  This report shows that a reoccurring and prominent source of the problems is key management

Need for cyber security  One goal of smart meters is the ability to control device. (Theft, Software hacking, all kinds of mischief).  As the grid becomes more automated, threats will grow more rapidly.  In 2011, nCircle, a provider of automated security and compliance auditing solutions, announced the results of their Smart Grid Survey.  77% of the surveyors were concerned about smart grid cyber security. Therefore smart meter deployment.

Smart meter infrastructure  Advanced Metering Infrastructure (AMI), requires combining different security technologies specially encryption.  Despite these technologies, AMI poses several challenges like scalability since AMI involves millions of devices.  AMI uses many different communication technologies, each potentially using different encryption protocols and requiring different keys, managing keys becomes a complex task.

Advanced Metering Infrastructure AMI has four main components: 1. the utility company 2. the data collector or concentrator 3. the smart meter 4. the home or office

Communication Standards and Protocols  The connection between the smart meter and home appliances, that is, the HAN, can use several communication technologies such as ZigBee, Wi- Fi, Ethernet, Z-Wave etc.  We will concentrate on the ZigBee technology.  As in HAN, the connection between the collector and the smart meter also can be implemented using RF Mesh and 3G (EDGE or HSDPA).  Connection between Utility and Collector also allows many protocols and generally uses GPRS based protocol.

AMI network technology and protocols standards

AMI communications security protocol standards

ANSI Meter Standards  Originally, the data formats, data structure and protocols for electricity meters were proprietary. However, utility companies wanted a compatible communication protocol between meters.  Thus, ANSI C12.19 was created to describe meter data formats and structures.  Protocol ANSI C12.18 provides point-to-point communication over optical connections and C12.21 for communication over telephone modems for meters.  Users also wanted to send and receive C12.19 tables remotely over networked connections and ANSI C12.22 was inaugurated.

Smart Meter Design and Security  The NISTIR 7628 outlines security requirements for an AMI (defines the need of privacy and integrity of data exchanged between various components that make a metering system.)  A fully deployed AMI contains many working parts and communications paths and the priority of a given security principle (Confidentiality, Integrity, and Availability) varies widely from component to component and function to function.

Physical Layout of Smart meters Two inner physical components: 1. The meter board. (The meter board contains storage tables to hold the keys) 2. The communication board. (Used for communication. Within the communication board are the communication protocols.)

Cont’d..  The communication board and meter board are connected through a serial port.  The optical port in the meter allows reads and writes to the C12.19 tables in the meter board.  Access to the meter through the optical port is restricted by six security levels, L0 to L5, with the highest privilege being L5.

ANSI C12 standards  The meter board contains the physical storage for the keys and passwords.  All data stored in the meter board are stored in cleartext. These values travel from the meter board to the communication board through a serial port in cleartext.  The optical ports on the smart meter permit the operations of read and write to the tables in the meter board.  In order to protect passwords and keys, the protected tables permit write only and return empty values when read.

Cont’d..  Operators must log into the smart meter through the optical port or the wireless link  To successfully execute the command, an operator’s security level (L0 to L5) must be greater than or equal to the security level of that command

Security Levels(L0 to L5)  Level L0 - requires no password and only allows read commands  Level L1 - Allows only the meter to be read  Level L2 - Allows for demand resets.  Level L3 - Permits commands for the meter maintenance, such as date and time setting, modifying the Time-Of-Use rates and calendar, and loading profile configurations.  Level L4 - Permits programming and procedures to be done except for device configuration.  Level L5 - Allows device configuration, which is needed when altering the ANSI standard tables or manufacturing tables within the meter.

Tables in Meter Board  There are six main tables used in relation to the security of the smart meter.  Security/Password table. This table contains 5 passwords, one for each of the security levels L1 through L5.  Default Access Control table. It specifies the default read and write permissions.  Access Control table. It contains the access permissions for specific tables or procedures.  Keys table. It holds the keys used for encryption and authentication.  Extended Keys table. It holds application-related communication keys, an extension available on top of the smart meter security.  Host Access Security table. It is used to store authentication keys, encryption keys, and access permissions used by remote nodes.

Challenges  Meter has limited RAM.  Software flaws.  Hardware weaknesses  Micro probing to inject signals, capture data, manipulate registers and thereby retrieve sensitive information is another method of accessing the system.  Smarter techniques, such as differential power analysis, are used to extract the secret keys in integrated circuits.

Cont’d..  Key Storage - One set of possible keys stored are asymmetric keys used to authenticate the meter when it joins the Neighborhood Area Network (NAN).  It is known that C12.18 and the C12.22 protocol leverage a shared secret for authentication  The meter itself is easily accessible and an attacker can extract and review the firmware and EEPROM data contents for keys.  There are multiple vendors of AMI. Hence vendor’s implementation decision will greatly influence the security of the system.

Network Design

ZigBee

Why ZigBee  Low Power  Low memory usage  Connects to Lightweight Embedded Tech  On Chip Implementation

How is it used  2 ZigBee Networks.  HAN  NAN

The Stack

ZigBee Security

Key Management  Key Types  Master  Network  Links  Key Installation Methods  In-band  Out-of-Band  Pre-Installed

Keys: What else?  Network Key  Used to Perform Network layer Security  Routing messages  Network join requests  All devices must have the same NKey  Link Key  Used as Session Keys  Derived from the Master Key

Key Establishment Schemes (KE)  Symmetric Key KE (SKKE)  Public Key KE (PKKE)  Certificate Based KE (CBKE)  Uses ECQV implicit certificates D. R.L. Brown, M. J. Campagna, S. A. Vanstone, “Security of ECQV-Certified ECDSA Against Passive Adversaries”, Cryptology ePrint Archive: Report 2009/620.

ZigBee: Operation modes in AMI ResidentialCommercial

ZigBee: Vulnerabilities  PRNG vulnerability  One method was to uncover the ECC key  The other, when a Linear Feedback Shift Register is used.  No Key Revocation

GPRS

A GPRS session

GPRS: Problems  Messages before authentication are unencrypted  Even during authentication encryption is applied very late  One way authentication  SIM cards can be STOLEN!!!!

Security Threat Model

Threat,Attack Types and Counter Measures

Some more

Initial Research

Some findings.

Group Key Management Systems The scalability mainly depends by the following factors of the GKM scheme:  The size of the ciphertext.  The number of secrets needs to be stored at smart meters, the collectors, and the utility.  The efficiency of the GKM operations, especially re-keying

Proposed Work

Broadcast GKM

BGKM: Components A BGKM scheme consists of the following five algorithms:  Setup – it initializes system and security parameters.  SecGen – it assigns one or more secrets to each client.  KeyGen – it generates the public information using the secrets of a set of selected clients. The public information hides the group key.  KeyDer – A client with a valid secret uses this algorithm to derive the group key from the public information.  Re-Key – it re-generates the public information using the updated set of secrets. The new public information hides a new group key.

Physically Unclonable Function (PUF)  Usually place a secret in non-volatile memory  PUF is a device that relies on the differences in IC fabrication and hence cannot be spoofed  Characteristics  Different challenges to the same PUF produce unique responses.  Same challenge to different PUFs produces unique responses

Conclusion THANKYOU

Reference  Cryptographic Key Management for Smart Power Grids Approaches and Issues  M. Nabeel, J. Zage, S. Kerr, E. Bertino, CS Department, CERIAS and Cyber Center, Purdue University  N. Athula. Kulatunga, U. Sudheera Navaratne, ECET Department, Purdue University  M. Duren,Sypris Electronics  February 22, 2012