Traps, Exceptions, System Calls, & Privileged Mode Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University P&H Chapter 4.9, pages 509–515,

Slides:



Advertisements
Similar presentations
Traps, Exceptions, System Calls, & Privileged Mode Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P&H Chapter 4.9, pages 509–515,
Advertisements

More on Processes Chapter 3. Process image _the physical representation of a process in the OS _an address space consisting of code, data and stack segments.
Computer Organization CS224 Fall 2012 Lesson 44. Virtual Memory  Use main memory as a “cache” for secondary (disk) storage l Managed jointly by CPU hardware.
The Kernel Abstraction. Challenge: Protection How do we execute code with restricted privileges? – Either because the code is buggy or if it might be.
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
Virtual Memory 3 Hakim Weatherspoon CS 3410, Spring 2011 Computer Science Cornell University P & H Chapter
Traps, Exceptions, System Calls, & Privileged Mode Hakim Weatherspoon CS 3410, Spring 2011 Computer Science Cornell University P&H Chapter 4.9, pages 509–515,
Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University Virtual Memory 2 P & H Chapter
CS 153 Design of Operating Systems Spring 2015 Lecture 3: Intro and Architectural Support for Operating Systems.
Architectural Support for Operating Systems Prof. Sirer CS 4410 Cornell University.
Architectural Support for OS March 29, 2000 Instructor: Gary Kimura Slides courtesy of Hank Levy.
OS Fall ’ 02 Introduction Operating Systems Fall 2002.
OS Spring’03 Introduction Operating Systems Spring 2003.
Translation Buffers (TLB’s)
Pipeline Exceptions & ControlCSCE430/830 Pipeline: Exceptions & Control CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Yifeng.
1 Last Class: Introduction Operating system = interface between user & architecture Importance of OS OS history: Change is only constant User-level Applications.
OS Spring’04 Introduction Operating Systems Spring 2004.
What are Exception and Interrupts? MIPS terminology Exception: any unexpected change in the internal control flow – Invoking an operating system service.
CSE 451: Operating Systems Autumn 2013 Module 6 Review of Processes, Kernel Threads, User-Level Threads Ed Lazowska 570 Allen.
Deniz ALTINBUKEN CS 3410, Spring 2015 Computer Science Cornell University P&H Chapter 4.9, pages 445–452, appendix A.7.
1 CS503: Operating Systems Part 1: OS Interface Dongyan Xu Department of Computer Science Purdue University.
Protection and the Kernel: Mode, Space, and Context.
Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University P&H Chapter 4.9, pages 445–452, appendix A.7.
Operating Systems ECE344 Ashvin Goel ECE University of Toronto OS-Related Hardware.
July 30, 2001Systems Architecture II1 Systems Architecture II (CS ) Lecture 8: Exploiting Memory Hierarchy: Virtual Memory * Jeremy R. Johnson Monday.
1 CS/COE0447 Computer Organization & Assembly Language Chapter 5 part 4 Exceptions.
Lecture 3 Process Concepts. What is a Process? A process is the dynamic execution context of an executing program. Several processes may run concurrently,
Operating Systems Lecture 7 OS Potpourri Adapted from Operating Systems Lecture Notes, Copyright 1997 Martin C. Rinard. Zhiqing Liu School of Software.
Virtual Memory Expanding Memory Multiple Concurrent Processes.
Interrupt driven I/O. MIPS RISC Exception Mechanism The processor operates in The processor operates in user mode user mode kernel mode kernel mode Access.
1 CSE451 Architectural Supports for Operating Systems Autumn 2002 Gary Kimura Lecture #2 October 2, 2002.
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
Operating Systems 1 K. Salah Module 1.2: Fundamental Concepts Interrupts System Calls.
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
Lecture 26 Virtual Machine Monitors. Virtual Machines Goal: run an guest OS over an host OS Who has done this? Why might it be useful? Examples: Vmware,
CS2100 Computer Organisation Virtual Memory – Own reading only (AY2015/6) Semester 1.
Interrupt driven I/O Computer Organization and Assembly Language: Module 12.
Deniz ALTINBUKEN CS 3410, Spring 2015 Computer Science Cornell University P&H Chapter 4.9, pages 445–452, appendix A.7.
Interrupts and Exception Handling. Execution We are quite aware of the Fetch, Execute process of the control unit of the CPU –Fetch and instruction as.
Traps, Exceptions, System Calls, & Privileged Mode Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University P&H Chapter 4.9, pages 509–515,
Of Privilege, Traps, Interrupts & Exceptions Prof. Sirer CS 316 Cornell University.
Computer System Structures Interrupts
CS161 – Design and Architecture of Computer
Introduction to Operating Systems
Introduction to Operating Systems
Interrupts and exceptions
Traps, Exceptions, System Calls, & Privileged Mode
ECE232: Hardware Organization and Design
Interrupts and signals
CS161 – Design and Architecture of Computer
Morgan Kaufmann Publishers
CSE 120 Principles of Operating
Virtual Memory 3 Hakim Weatherspoon CS 3410, Spring 2011
Syscalls, exceptions, and interrupts, …oh my!
CSE 451: Operating Systems Spring 2012 Module 6 Review of Processes, Kernel Threads, User-Level Threads Ed Lazowska 570 Allen.
Architectural Support for OS
Translation Buffers (TLB’s)
Interrupts and Exception Handling
CSE 451: Operating Systems Autumn 2003 Lecture 2 Architectural Support for Operating Systems Hank Levy 596 Allen Center 1.
CSE 451: Operating Systems Autumn 2001 Lecture 2 Architectural Support for Operating Systems Brian Bershad 310 Sieg Hall 1.
Translation Buffers (TLB’s)
CSE 451: Operating Systems Winter 2007 Module 2 Architectural Support for Operating Systems Brian Bershad 562 Allen Center 1.
CSE 451: Operating Systems Winter 2003 Lecture 2 Architectural Support for Operating Systems Hank Levy 412 Sieg Hall 1.
Architectural Support for OS
Syscalls, exceptions, and interrupts, …oh my!
Translation Buffers (TLBs)
Virtual Memory.
Syscalls, exceptions, and interrupts, …oh my!
Review What are the advantages/disadvantages of pages versus segments?
Interrupts and Exception Handling
Presentation transcript:

Traps, Exceptions, System Calls, & Privileged Mode Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University P&H Chapter 4.9, pages 509–515, appendix B.7

Stack, Data, Code Stored in Memory Administrivia: Where are we now in the course?

Administrivia Next four weeks Week 11 (Apr 8): Lab3 due and Project3/HW4 handout Week 12 (Apr 15): Project3 design doc due and HW4 due Week 13 (Apr 22): Project3 due and Prelim3 Week 14 (Apr 29): Project4 handout Final Project for class Week 15 (May 6): Project4 design doc due Week 16 (May 13): Project4 due

Administrivia Lab3 is due this week, Thursday, April 11 th Project3 available now Design Doc due next week, Monday, April 15 th Schedule a Design Doc review Mtg now, by this Friday, April 12 th Whole project due Monday, April 22 nd Competition/Games night Friday, April 26 th, 5-7pm. Location: B17 Upson Homework4 is available now Work alone Due next week, Wednesday, April 17 th Question1 on Virtual Memory is pre-lab question for in-class Lab4 HW Help Session Thurs (Apr 11) and Mon (Apr 15), 6-7:30pm in B17 Upson Prelim3 is in two and a half weeks, Thursday, April 25 th Time and Location: 7:30pm in Phillips 101 and Upson B17 Old prelims are online in CMS

Summary of Caches/TLBs/VM Caches, Virtual Memory, & TLBs: answer three questions Where can block be placed? Direct, n-way, fully associative What block is replaced on miss? LRU, Random, LFU, … How are writes handled? No-write (w/ or w/o automatic invalidation) Write-back (fast, block at time) Write-through (simple, reason about consistency)

Summary of Caches/TLBs/VM Caches, Virtual Memory, & TLBs: answer three questions Where can block be placed? Caches: direct/n-way/fully associative (fa) VM: fa, but with a table of contents to eliminate searches TLB: fa What block is replaced on miss? varied How are writes handled? Caches: usually write-back, or maybe write-through, or maybe no-write w/ invalidation VM: write-back TLB: usually no-write

Summary of Cache Design Parameters L1TLBPaged Memory Size (blocks) 1/4k to 4k 64 to 4k16k to 1M Size (kB) 16 to 642 to 161M to 4G Block size (B) k to 64k Miss rates 2%-5%0.01% to 2%10 -4 to % Miss penalty M-100M

Big Picture: Traps, Exceptions, System Calls (OS) 0xfffffffc 0x top bottom 0x7ffffffc 0x x x system reserved stack system reserved code (text) static data dynamic data (heap).data.text

Stack, Data, Code Stored in Memory $0 (zero) $1 ($at) $29 ($sp) $31 ($ra) Code Stored in Memory (also, data and stack) $$ Big Picture: Traps, Exceptions, System Calls (OS)

What happens with our pipeline if an exception occurs? What are exceptions? Any unexpected change in control flow. Interrupt -> cause of control flow change external (async) Exception -> cause of control flow change internal (sync) Exception: Divide by 0, overflow Exception: Bad memory address Exception: Page fault Interrupt: Hardware interrupt (e.g. keyboard stroke) Big Picture: Traps, Exceptions, System Calls (OS)

Goals for Today Exceptions Hardware/Software Boundary Privileged mode Operating System Exceptions vs Interrupts vs Traps vs Systems calls

Next Goal What are exceptions and how are they handled?

Exceptions Exceptions are any unexpected change in control flow. Interrupt -> cause of control flow change external Exception -> cause of control flow change internal Exception: Divide by 0, overflow Exception: Bad memory address Exception: Page fault Interrupt: Hardware interrupt (e.g. keyboard stroke) We need software to help resolve exceptions Exceptions are at the hardware/software boundary

Hardware/Software Boundary Virtual to physical address translation is assisted by hardware Need both hardware and software support Software Page table storage, fault detection and updating –Page faults result in interrupts that are then handled by the OS –Must update appropriately Dirty and Reference bits (e.g., ~LRU) in the Page Tables

Hardware/Software Boundary OS has to keep TLB valid Keep TLB valid on context switch Flush TLB when new process runs (x86) Store process id (MIPs) Also, store pids with cache to avoid flushing cache on context switches Hardware support Page table register Process id register

Hardware/Software Boundary Hardware support for exceptions Exception program counter (EPC) Cause register Special instructions to load TLB –Only do-able by kernel Precise and imprecise exceptions In pipelined architecture –Have to correctly identify PC of exception –MIPS and modern processors support this

Hardware/Software Boundary Precise exceptions: Hardware guarantees (similar to a branch) Previous instructions complete Later instructions are flushed EPC and cause register are set Jump to prearranged address in OS When you come back, restart instruction Disable exceptions while responding to one –Otherwise can overwrite EPC and cause

Hardware/Software Boundary Drawbacks: Any program can muck with TLB, PageTables, OS code… A program can intercept exceptions of other programs OS can crash if program messes up $sp, $fp, $gp, … Wrong: Make these instructions and registers available only to “OS Code” “OS Code” == any code above 0x Program can still JAL into middle of OS functions Program can still muck with OS memory, pagetables, …

Anatomy of an Executing Program 0xfffffffc 0x top bottom 0x7ffffffc 0x x x system reserved stack system reserved code (text) static data dynamic data (heap).data.text

Takeaway Exceptions are any unexpected change in control flow. Precise exceptions are necessary to identify the exceptional instructional, cause of exception, and where to start to continue execution. We need help of both hardware and software (e.g. OS) to resolve exceptions. Finally, we need some type of protected mode to prevent programs from modifying OS or other programs.

Next Goal How do we protect the operating system (OS) from programs? How do we protect programs from one another?

Privileged Mode aka Kernel Mode

Operating System Some things not available to untrusted programs: Exception registers, HALT instruction, MMU instructions, talk to I/O devices, OS memory,... Need trusted mediator: Operating System (OS) Safe control transfer Data isolation P1P2P3P4 VMfilesystemnet driver disk eth MMU untrusted

Privilege Mode CPU Mode Bit / Privilege Level Status Register Mode 0 = untrusted = user domain “Privileged” instructions and registers are disabled by CPU Mode 1 = trusted = kernel domain All instructions and registers are enabled Boot sequence: load first sector of disk (containing OS code) to well known address in memory Mode  1; PC  well known address OS takes over… initialize devices, MMU, timers, etc. loads programs from disk, sets up pagetables, etc. Mode  0; PC  program entry point (note: x86 has 4 levels x 3 dimensions, but only virtual machines uses any the middle)

Terminology Trap: Any kind of a control transfer to the OS Syscall: Synchronous (planned), program-to-kernel transfer SYSCALL instruction in MIPS (various on x86) Exception: Synchronous, program-to-kernel transfer exceptional events: div by zero, page fault, page protection err, … Interrupt: Aysnchronous, device-initiated transfer e.g. Network packet arrived, keyboard event, timer ticks * real mechanisms, but nobody agrees on these terms

Sample System Calls System call examples: putc(): Print character to screen Need to multiplex screen between competing programs send(): Send a packet on the network Need to manipulate the internals of a device sbrk(): Allocate a page Needs to update page tables & MMU sleep(): put current prog to sleep, wake other Need to update page table base register

System Calls System call: Not just a function call Don’t let program jump just anywhere in OS code OS can’t trust program’s registers (sp, fp, gp, etc.) SYSCALL instruction: safe transfer of control to OS Mode  0; Cause  syscall; PC  exception vector MIPS system call convention: user program mostly normal (save temps, save ra, …) but: $v0 = system call number, which specifies the operation the application is requesting

Invoking System Calls int getc() { asm("addiu $2, $0, 4"); asm("syscall"); } char *gets(char *buf) { while (...) { buf[i] = getc(); } }

Libraries and Wrappers Compilers do not emit SYSCALL instructions Compiler doesn’t know OS interface Libraries implement standard API from system API libc (standard C library): getc()  syscall sbrk()  syscall write()  syscall gets()  getc() printf()  write() malloc()  sbrk() …

Where does OS live? In its own address space? But then syscall would have to switch to a different address space Also harder to deal with syscall arguments passed as pointers So in the same address space as process Use protection bits to prevent user code from writing kernel Higher part of VM, lower part of physical memory

Anatomy of an Executing Program 0xfffffffc 0x top bottom 0x7ffffffc 0x x x system reserved stack system reserved code (text) static data dynamic data (heap).data.text

Full System Layout Typically all kernel text, most data At same VA in every address space Map kernel in contiguous physical memory when boot loader puts kernel into physical memory The OS is omnipresent and steps in where necessary to aid application execution Typically resides in high memory When an application needs to perform a privileged operation, it needs to invoke the OS OS Text Stack Heap Data Text OS Data OS Heap OS Stack 0x000…0 0x7ff…f 0xfff…f 0x800…0 Memory

SYSCALL instruction SYSCALL instruction does an atomic jump to a controlled location Switches the sp to the kernel stack Saves the old (user) SP value Saves the old (user) PC value (= return address) Saves the old privilege mode Sets the new privilege mode to 1 Sets the new PC to the kernel syscall handler

SYSCALL instruction Kernel system call handler carries out the desired system call Saves callee-save registers Examines the syscall number Checks arguments for sanity Performs operation Stores result in v0 Restores callee-save registers Performs a “return from syscall” (ERET) instruction, which restores the privilege mode, SP and PC

Takeaway Exceptions are any unexpected change in control flow. Precise exceptions are necessary to identify the exceptional instructional, cause of exception, and where to start to continue execution. We need help of both hardware and software (e.g. OS) to resolve exceptions. Finally, we need some type of protected mode to prevent programs from modifying OS or other programs. It is necessary to have a privileged mode (aka kernel mode) where a trusted mediator, the Operating System (OS), provides isolation between programs, protects shared resources, and provides safe control transfer.

Next Goal System call is any control transfer into the OS Similarly, exceptions and interrupts are control transfers into the OS. How does the CPU and OS handle exceptions and interrupts?

Interrupts

Recap: Traps  Map kernel into every process using supervisor PTEs  Switch to kernel mode on trap, user mode on return Trap: Any kind of a control transfer to the OS Syscall: Synchronous, program-to-kernel transfer user does caller-saves, invokes kernel via syscall kernel handles request, puts result in v0, and returns Exception: Synchronous, program-to-kernel transfer user div/load/store/… faults, CPU invokes kernel kernel saves everything, handles fault, restores, and returns Interrupt: Aysnchronous, device-initiated transfer e.g. Network packet arrived, keyboard event, timer ticks kernel saves everything, handles event, restores, and returns

Exceptions Traps (System calls) are control transfers to the OS, performed under the control of the user program Sometimes, need to transfer control to the OS at a time when the user program least expects it Division by zero, Alert from power supply that electricity is going out Alert from network device that a packet just arrived Clock notifying the processor that clock just ticked Some of these causes for interruption of execution have nothing to do with the user application Need a (slightly) different mechanism, that allows resuming the user application

Interrupts & Exceptions On an interrupt or exception CPU saves PC of exception instruction (EPC) CPU Saves cause of the interrupt/privilege (Cause register) Switches the sp to the kernel stack Saves the old (user) SP value Saves the old (user) PC value Saves the old privilege mode Sets the new privilege mode to 1 Sets the new PC to the kernel interrupt/exception handler

Interrupts & Exceptions Kernel interrupt/exception handler handles the event Saves all registers Examines the cause Performs operation required Restores all registers Performs a “return from interrupt” instruction, which restores the privilege mode, SP and PC

Example: Clock Interrupt Example: Clock Interrupt* Every N cycles, CPU causes exception with Cause = CLOCK_TICK OS can select N to get e.g TICKs per second.ktext 0x # (step 1) save *everything* but $k0, $k1 to 0xB # (step 2) set up a usable OS context # (step 3) examine Cause register, take action if (Cause == PAGE_FAULT) handle_pfault(BadVaddr) else if (Cause == SYSCALL) dispatch_syscall($v0) else if (Cause == CLOCK_TICK) schedule() # (step 4) restore registers and return to where program left off * not the CPU clock, but a programmable timer clock

Scheduler struct regs context[]; int ptbr[]; schedule() { i = current_process; j = pick_some_process(); if (i != j) { current_process = j; memcpy(context[i], 0xB ); memcpy(0xB , context[j]); asm(“mtc0 Context, ptbr[j]”); } }

Syscall vs. Interrupt Syscall vs. Exceptions vs. Interrupts Same mechanisms, but… Syscall saves and restores much less state Others save and restore full processor state Interrupt arrival is unrelated to user code

Takeaway Exceptions are any unexpected change in control flow. Precise exceptions are necessary to identify the exceptional instructional, cause of exception, and where to start to continue execution. We need help of both hardware and software (e.g. OS) to resolve exceptions. Finally, we need some type of protected mode to prevent programs from modifying OS or other programs. It is necessary to have a privileged mode (aka kernel mode) where a trusted mediator, the Operating System (OS), provides isolation between programs, protects shared resources, and provides safe control transfer. To handle any exception or interrupt, OS analyzes the Cause register to vector into the appropriate exception handler. The OS kernel then handles the exception, and returns control to the same process, killing the current process, or possibly scheduling another process.

Summary Trap Any kind of a control transfer to the OS Syscall Synchronous, program-initiated control transfer from user to the OS to obtain service from the OS e.g. SYSCALL Exception Synchronous, program-initiated control transfer from user to the OS in response to an exceptional event e.g. Divide by zero, TLB miss, Page fault Interrupt Asynchronous, device-initiated control transfer from user to the OS e.g. Network packet, I/O complete