MAX IV linac overview and scope of automation Sara Thorin.

Slides:



Advertisements
Similar presentations
FEL and linac plans at MAX IV laboratory
Advertisements

KEK : Novel Accelerator TYL Workshop M. Yoshida, M. Nozaki, K. Koyama, High energy research organization (KEK) -Collaboration -IZEST (CEA) :
USR-WS (Beijing) Oct. 30 – Nov. 1, 2012 K. Soutome (JASRI / SPring-8) on behalf of SPring-8 Upgrade Working Group Injection Scheme for the SPring-8 Upgrade.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Proposal for Japan-US collaboration on New Test Facility for Novel Accelerator R&D (FACET at KEK) M. Yoshida, K. Nakajima, M. Sato, S. Matsumoto, M. Nozaki,
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
2 February 2005Ken Moffeit Spin Rotation scheme for two IRs Ken Moffeit SLAC.
ALPHA Storage Ring Indiana University Xiaoying Pang.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Low Emittance RF Gun Developments for PAL-XFEL
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
W.S. Graves ASAC Review Sept 18-19, 2003 R&D at Bates William S. Graves MIT-Bates Laboratory Presentation to MIT X-ray laser Accelerator Science Advisory.
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN.
Automatic Machine Review Dec 2015 MAX IV Storage Rings Automation Pedro F. Tavares.
NSLS-II Transfer Lines BUDKER INSTITUTE OF NUCLEAR PHYSICS NOVOSIBIRSK.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
Main Technical Issues of theSuper B Injector Main Technical Issues of the Super B Injector SuperB Meeting, Isola d’Elba, May 31st – June 3rd, 2008 D. Alesini,
X-band Based FEL proposal
CLIC DB injector facility, photo-injector option studies LCWS, Granada, September 26 th -30 th,2011Steffen Döbert, BE-RF  CLIC DB injector  Thermionic.
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
High intensity electron beam and infrastructure Paolo Valente * INFN Roma * On behalf of the BTF and LINAC staff.
S.M. Polozov & Ko., NRNU MEPhI
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Summary of SPARC first-phase operations
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
Options and Recommendations for TL and Dumps
Status of the CLIC main beam injectors
Timing and synchronization at SPARC
Tango status at Elettra
Paul Scherrer Institut
Injection facility for Novosibirsk Super Charm Tau Factory
Revised Commissioning Strategy
BC2 Commissioning Parameters
SuperB project. Injection scheme design status
Pol. positron generation scheme for ILC
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
LCLS Commissioning Parameters
LCLS Commissioning Parameters
LCLS Longitudinal Feedback and Stability Requirements
LAL meeting on e+ studies, Oct. 2010
Cui Xiaohao, Bian Tianjian, Zhang Chuang 2017/11/07
LCLS Commissioning Parameters
Advanced Research Electron Accelerator Laboratory
LCLS Commissioning P. Emma, et al
Modified Beam Parameter Range
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
High Charge Low Emittance RF Gun for SuperKEKB
Operational Experience with LCLS RF systems
LCLS Commissioning Parameters
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
J. Seeman Perugia Super-B Meeting June 2009
Update on ERL Cooler Design Studies
CDR2 – Injection System Injection system overview (Seeman) (2 pages)
Electron mode A B C D > 4 GeV e- θ g e- DR α PS
Presentation transcript:

MAX IV linac overview and scope of automation Sara Thorin

The MAX IV linac Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

The MAX IV linac Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 2 Electron guns -Thermionic RF gun -High brightness photo cathode gun (+ laser system)

The MAX IV linac Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 2 Electron guns -Thermionic RF gun -High brightness photo cathode gun (+ laser system) 39 linac structures 18 (soon 20) RF stations SLED LLRF + MDL 3 GeV with ~ 400 MeV redundancy

The MAX IV linac Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 2 Electron guns -Thermionic RF gun -High brightness photo cathode gun (+ laser system) 39 linac structures 18 (soon 20) RF stations SLED LLRF + MDL 3 GeV with ~ 400 MeV redundancy 2 Bunch 260 MeV 3 GeV

The MAX IV linac Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun 2 Electron guns -Thermionic RF gun -High brightness photo cathode gun (+ laser system) 39 linac structures 18 (soon 20) RF stations SLED LLRF + MDL 3 GeV with ~ 400 MeV redundancy 2 Bunch 260 MeV 3 GeV Transferlines to the 1.5 GeV 3 GeV

MAX IV linac operation modes Full energy injection and top up operation for the two storage rings Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun

MAX IV linac operation modes Full energy injection and top up operation for the two storage rings Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Thermionic gun Energy1.5 GeV/ 3GeV Rep rate10 Hz Charge0.6-1 nC/shot Emittance< 10 mm mrad Energy spread<0.2%

MAX IV linac operation modes Full energy injection and top up operation for the two storage rings Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Thermionic gun Energy1.5 GeV/ 3GeV Rep rate10 Hz Charge0.6-1 nC/shot Emittance< 10 mm mrad Energy spread<0.2% Photo cathode gun Energy1.5 GeV/ 3GeV Rep rate10 Hz Charge0.6-1 nC/shot Emittance< 2 mm mrad Energy spread<< 0.2%

MAX IV linac operation modes Full energy injection and top up operation for the two storage rings Kicker & septum Extraction 3 GeV 260 MeV SPF 3 GeV MAX IV linac layout Extraction 1.5 GeV L2A L2B L3A L9B L19B L1B L0 Thermionic RF gun Photo cathode RF gun Thermionic gun Energy1.5 GeV/ 3GeV Rep rate10 Hz Charge0.6-1 nC/shot Emittance< 10 mm mrad Energy spread<0.2% Photo cathode gun Energy1.5 GeV/ 3GeV Rep rate10 Hz Charge0.6-1 nC/shot Emittance< 2 mm mrad Energy spread<< 0.2% High brightness driver for the Short Pulse Facility Photo cathode gun Energy3GeV Rep rate100 Hz Charge100 pC Bunch length100 fs Emittance1 mm mrad Energy spread<0.4%

Automation Switching operation mode ● RF power/ SLED filltime ● RF phase ● Rep rate ● Cooling ● Dipoles ON/OFF ● Optics ● Trajectory correction ● Trigger source/synchronisation ● Laser shutter ● Laser mode

Automation Switching operation mode ● RF power/ SLED filltime ● RF phase ● Rep rate ● Cooling ● Dipoles ON/OFF ● Optics ● Trajectory correction ● Trigger source/synchronisation ● Laser shutter ● Laser mode During operation ● Feedback – Energy – Phase – Bunch Length – Trajectory – Laser drifts – Charge drift ● Alarm/error handling – Energy compensation (one modulator goes down or power reduced, compensate with others) – Vacuum interlocks – …