President UniversityErwin SitompulPBST 9/1 Lecture 9 Probability and Statistics Dr.-Ing. Erwin Sitompul President University

Slides:



Advertisements
Similar presentations
Negative Binomial Distribution
Advertisements

JMB Chapter 6 Part 1 v2 EGR 252 Spring 2009 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Chapter 8: Binomial and Geometric Distributions
Chi-Squared Distribution Leadership in Engineering
Continuous Random Variables. L. Wang, Department of Statistics University of South Carolina; Slide 2 Continuous Random Variable A continuous random variable.
Engineering Probability and Statistics - SE-205 -Chap 4 By S. O. Duffuaa.
Probability Densities
Review.
Introduction to the Continuous Distributions
CHAPTER 6 Statistical Analysis of Experimental Data
Some standard univariate probability distributions
Some Continuous Probability Distributions
Continuous Random Variables and Probability Distributions
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 4 Continuous Random Variables and Probability Distributions.
The Lognormal Distribution
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
1 Ch5. Probability Densities Dr. Deshi Ye
CA200 Quantitative Analysis for Business Decisions.
Chapter 5 Some Discrete Probability Distributions.
JMB Chapter 6 Lecture 3 EGR 252 Spring 2011 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
JMB Ch6 Lecture 3 revised 2 EGR 252 Fall 2011 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 8 Continuous.
Continuous Random Variables and Probability Distributions
Chapter 3 Basic Concepts in Statistics and Probability
Normal Approximation Of The Binomial Distribution:
CHAPTER FIVE SOME CONTINUOUS PROBABILITY DISTRIBUTIONS.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
Variance and Covariance
Chapter 6 Some Continuous Probability Distributions.
Some Continuous Probability Distributions
Continuous probability distributions
BINOMIALDISTRIBUTION AND ITS APPLICATION. Binomial Distribution  The binomial probability density function –f(x) = n C x p x q n-x for x=0,1,2,3…,n for.
The Practice of Statistics Third Edition Chapter 8: The Binomial and Geometric Distributions 8.1 The Binomial Distribution Copyright © 2008 by W. H. Freeman.
President UniversityErwin SitompulPBST 7/1 Dr.-Ing. Erwin Sitompul President University Lecture 7 Probability and Statistics
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Normal distributions The most important continuous probability distribution in the entire filed of statistics is the normal distributions. All normal distributions.
CHAPTER FIVE SOME CONTINUOUS PROBABILITY DISTRIBUTIONS.
Statistics 300: Elementary Statistics Sections 7-2, 7-3, 7-4, 7-5.
Lecture 26 Prof. Dr. M. Junaid Mughal Mathematical Statistics 1.
Chapter 4. Random Variables - 3
Chapter 5 Sampling Distributions. Introduction Distribution of a Sample Statistic: The probability distribution of a sample statistic obtained from a.
Chapter 17 Probability Models.
CHAPTER 5 CONTINUOUS PROBABILITY DISTRIBUTION Normal Distributions.
President UniversityErwin SitompulPBST 10/1 Lecture 10 Probability and Statistics Dr.-Ing. Erwin Sitompul President University
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
THE NORMAL DISTRIBUTION
Chapter 3 Probability Distribution
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
CHAPTER 6 Random Variables
Engineering Probability and Statistics - SE-205 -Chap 4
Continuous Probability Distributions Part 2
Binomial and Geometric Random Variables
CHAPTER 6 Random Variables
Continuous Random Variables
Continuous Distributions
ENGR 201: Statistics for Engineers
Some Continuous Probability Distributions
Continuous Probability Distributions Part 2
Chapter 6: Random Variables
Continuous Probability Distributions Part 2
Continuous Probability Distributions Part 2
Continuous Probability Distributions Part 2
Elementary Statistics
S2.3 Continuous distributions
12/12/ A Binomial Random Variables.
Continuous Probability Distributions Part 2
Chapter 8: Binomial and Geometric Distributions
Presentation transcript:

President UniversityErwin SitompulPBST 9/1 Lecture 9 Probability and Statistics Dr.-Ing. Erwin Sitompul President University

President UniversityErwin SitompulPBST 9/2 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial The probabilities associated with binomial experiments are readily obtainable from the formula b(x;n, p) of the binomial distribution or from the table when n is small. For large n, making the distribution table is not practical anymore. Nevertheless, the binomial distribution can be nicely approximated by the normal distribution under certain circumstances.

President UniversityErwin SitompulPBST 9/3 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial If X is a binomial random variable with mean μ = np and variance σ 2 = npq, then the limiting form of the distribution of as n  ∞, is the standard normal distribution n(z;0, 1).  Normal approximation of b(x; 15, 0.4)  Each value of b(x; 15, 0.4) is approximated by P(x–0.5 < X < x+0.5)

President UniversityErwin SitompulPBST 9/4 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial  Normal approximation of and

President UniversityErwin SitompulPBST 9/5 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial The degree of accuracy, that is how well the normal curve fits the binomial histogram, will increase as n increases. If the value of n is small and p is not very close to 1/2, normal curve will not fit the histogram well, as shown below. The approximation using normal curve will be excellent when n is large or n is small with p reasonably close to 1/2. As rule of thumb, if both np and nq are greater than or equal to 5, the approximation will be good.

President UniversityErwin SitompulPBST 9/6 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial Let X be a binomial random variable with parameters n and p. For large n, X has approximately a normal distribution with μ = np and σ 2 = npq = np(1–p) and and the approximation will be good if np and nq = n(1–p) are greater than or equal to 5.

President UniversityErwin SitompulPBST 9/7 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial The probability that a patient recovers from a rare blood disease is 0.4. If 100 people are known to have contracted this disease, what is the probability that less than 30 survive?  After interpolation  Can you calculate the exact solution?

President UniversityErwin SitompulPBST 9/8 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial A multiple-choice quiz has 200 questions each with 4 possible answers of which only 1 is the correct answer. What is the probability that sheer guess-work yields from 25 to 30 correct answers for 80 of the 200 problems about which the student has no knowledge?

President UniversityErwin SitompulPBST 9/9 Normal Approximation to the Binomial Chapter 6.5Normal Approximation to the Binomial PU Physics entrance exam consists of 30 multiple-choice questions each with 4 possible answers of which only 1 is the correct answer. What is the probability that a prospective students will obtain scholarship by correctly answering at least 80% of the questions just by guessing?  It is practically impossible to get scholarship just by pure luck in the entrance exam

President UniversityErwin SitompulPBST 9/10 Gamma and Exponential Distributions Chapter 6.6Gamma and Exponential Distributions There are still numerous situations that the normal distribution cannot cover. For such situations, different types of density functions are required. Two such density functions are the gamma and exponential distributions. Both distributions find applications in queuing theory and reliability problems. The gamma function is defined by for α > 0.

President UniversityErwin SitompulPBST 9/11 Gamma and Exponential Distributions Chapter 6.6Gamma and Exponential Distributions |Gamma Distribution| The continuous random variable X has a gamma distribution, with parameters α and β, if its density function is given by where α > 0 and β > 0. |Exponential Distribution| The continuous random variable X has an exponential distribution, with parameter β, if its density function is given by where β > 0.

President UniversityErwin SitompulPBST 9/12 Gamma and Exponential Distributions Chapter 6.6Gamma and Exponential Distributions  Gamma distributions for certain values of the parameters α and β  The gamma distribution with α = 1 is called the exponential distribution

President UniversityErwin SitompulPBST 9/13 Gamma and Exponential Distributions Chapter 6.6Gamma and Exponential Distributions The mean and variance of the gamma distribution are The mean and variance of the exponential distribution are and

President UniversityErwin SitompulPBST 9/14 Applications of Gamma and Exponential Distributions Chapter 6.7Applications of the Gamma and Exponential Distributions Suppose that a system contains a certain type of component whose time in years to failure is given by T. The random variable T is modeled nicely by the exponential distribution with mean time to failure β = 5. If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years?  The probability whether the component is still functioning at the end of 8 years  The probability whether at least 2 out of 5 such component are still functioning at the end of 8 years

President UniversityErwin SitompulPBST 9/15 Chapter 6.7Applications of the Gamma and Exponential Distributions Suppose that telephone calls arriving at a particular switchboard follow a Poisson process with an average of 5 calls coming per minute. What is the probability that up to a minute will elapse until 2 calls have come in to the switchboard?  β is the mean time of the event of calling  α is the quantity of the event of calling Applications of Gamma and Exponential Distributions

President UniversityErwin SitompulPBST 9/16 Chapter 6.7Applications of the Gamma and Exponential Distributions Based on extensive testing, it is determined that the average of time Y before a washing machine requires a major repair is 4 years. This time is known to be able to be modeled nicely using exponential function. The machine is considered a bargain if it is unlikely to require a major repair before the sixth year. (a)Determine the probability that it can survive without major repair until more than 6 years. (b)What is the probability that a major repair occurs in the first year? (a) (b)  Only 22.3% survives until more than 6 years without major reparation  22.1% will need major reparation after used for 1 year Applications of Gamma and Exponential Distributions

President UniversityErwin SitompulPBST 9/17 Chi-Squared Distribution Chapter 6.8Chi-Squared Distribution Another very important special case of the gamma distribution is obtained by letting α = v/2 and β = 2, where v is a positive integer. The result is called the chi-squared distribution, with a single parameter v called the degrees of freedom. The chi-squared distribution plays a vital role in statistical inference. It has considerable application in both methodology and theory. Many chapters ahead of us will contain important applications of this distribution.

President UniversityErwin SitompulPBST 9/18 Chi-Squared Distribution Chapter 6.8Chi-Squared Distribution |Chi-Squared Distribution| The continuous random variable X has a chi-squared distribution, with v degrees of freedom, if its density function is given by where v is a positive integer. The mean and variance of the chi-squared distribution are and

President UniversityErwin SitompulPBST 9/19 Lognormal Distribution Chapter 6.9Lognormal Distribution The lognormal distribution is used for a wide variety of applications. The distribution applies in cases where a natural log transformation results in a normal distribution.

President UniversityErwin SitompulPBST 9/20 Lognormal Distribution Chapter 6.9Lognormal Distribution |Lognormal Distribution| The continuous random variable X has a lognormal distribution if the random variable Y = ln(X) has a normal distribution with mean μ and standard deviation σ. The resulting density function of X is The mean and variance of the chi-squared distribution are and

President UniversityErwin SitompulPBST 9/21 Lognormal Distribution Chapter 6.9Lognormal Distribution Concentration of pollutants produced by chemical plants historically are known to exhibit behavior that resembles a log normal distribution. This is important when one considers issues regarding compliance to government regulations. Suppose it is assumed that the concentration of a certain pollutant, in parts per million, has a lognormal distribution with parameters μ = 3.2 and σ = 1. What is the probability that the concentration exceeds 8 parts per million?  F denotes the cumulative distribution function of the standard normal distribution  a. k. a. the area under the normal curve

President UniversityErwin SitompulPBST 9/22 Homework 8A Probability and Statistics 1.(a) Suppose that a sample of 1600 tires of the same type are obtained at random from an ongoing production process in which 8% of all such tires produced are defective. What is the probability that in such sample 150 or fewer tires will be defective? (Sou18. CD6-13) (b) If 10% of men are bald, what is the probability that more than 100 in a random sample of 818 men are bald?