Chapter 6 The Muscular System Essentials of Human Anatomy & Physiology Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System Slides 6.1 – 6.17 Lecture Slides in PowerPoint by Jerry L. Cook Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
The Muscular System Muscles are responsible for all types of body movement Three basic muscle types are found in the body Skeletal muscle Cardiac muscle Smooth muscle Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Characteristics of Muscles Skeletal and smooth muscle cells are elongated (muscle cell = muscle fiber) Contraction of muscles is due to the movement of microfilaments All muscles share some terminology Prefix myo refers to muscle Prefix mys refers to muscle Prefix sarco refers to flesh Slide 6.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Skeletal Muscle Characteristics Most are attached by tendons to bones Cells are multinucleate Striated – have visible banding Voluntary – subject to conscious control Cells are surrounded and bundled by connective tissue Slide 6.3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Connective Tissue Wrappings of Skeletal Muscle Endomysium – around single muscle fiber Perimysium – around a fascicle (bundle) of fibers Figure 6.1 Slide 6.4a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Connective Tissue Wrappings of Skeletal Muscle Epimysium – covers the entire skeletal muscle Fascia – on the outside of the epimysium Figure 6.1 Slide 6.4b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Skeletal Muscle Attachments Epimysium blends into a connective tissue attachment Tendon – cord-like structure Mostly collagen fibers Often cross a joint due to toughness and small size Aponeuroses – sheet-like structure Attach muscles indirectly to bones, cartilage or connective tissue covering Slide 6.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Skeletal Muscle Attachments Sites of muscle attachment Bones Cartilages Connective tissue coverings Slide 6.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Smooth Muscle Characteristics Has no striations Spindle-shaped cells Single nucleus Involuntary – no conscious control Found mainly in the walls of hollow organs Figure 6.2a Slide 6.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Cardiac Muscle Characteristics Has striations Usually has a single nucleus Joined to another muscle cell at an intercalated disc Involuntary Found only in the heart Figure 6.2b Slide 6.7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Function of Muscles Produce movement Maintain posture Stabilize joints Generate heat Slide 6.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Cells are multinucleate Nuclei are just beneath the sarcolemma Figure 6.3a Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Sarcolemma – specialized plasma membrane Sarcoplasmic reticulum – specialized smooth endoplasmic reticulum Figure 6.3a Slide 6.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Myofibril – long organelles inside muscle cells Bundles of myofilaments Myofibrils are aligned to give distrinct bands I band = light band Thin filaments A band = dark band Thick filaments Slide 6.10a
Microscopic Anatomy of Skeletal Muscle Sarcomere Contractile unit of a muscle fiber Figure 6.3b Slide 6.10b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Organization of the sarcomere Thick filaments = myosin filaments Composed of the protein myosin Has ATPase enzymes Figure 6.3c Slide 6.11a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Organization of the sarcomere Thin filaments = actin filaments Composed of the protein actin Figure 6.3c Slide 6.11b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle Myosin filaments have heads (extensions, or cross bridges) Myosin and actin overlap somewhat Anchored to the Z disc Figure 6.3d Slide 6.12a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopic Anatomy of Skeletal Muscle At rest, there is a bare zone that lacks actin filaments called the H zone Sarcoplasmic reticulum (SR) – for storage of calcium Figure 6.3d Slide 6.12b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Properties of Skeletal Muscle Activity Irritability – ability to receive and respond to a stimulus Contractility – ability to shorten when an adequate stimulus is received Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Properties of Skeletal Muscle Activity Extensibility – ability of muscle cells to stretched Elasticity – ability to recoil and resume resting length after stretching Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Nerve Stimulus to Muscles Skeletal muscles must be stimulated by a motor neuron (nerve cell) to contract Motor unit One motor neuron Skeletal muscle cells stimulated by that neuron Figure 6.4a Slide 6.14
Nerve Stimulus to Muscles Neuromuscular junctions – association site of axon terminal of the motor neuron and muscle Figure 6.5b Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Nerve Stimulus to Muscles Synaptic cleft – gap between nerve and muscle Nerve and muscle do not make contact Area between nerve and muscle is filled with interstitial fluid Figure 6.5b Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Transmission of Nerve Impulse to Muscle Neurotransmitter – chemical released by nerve upon arrival of nerve impulse The neurotransmitter for skeletal muscle is acetylcholine (ACh) Neurotransmitter (Acetylcholine) attaches to receptors on the sarcolemma Sarcolemma becomes permeable to sodium (Na+) Slide 6.16a
Transmission of Nerve Impulse to Muscle Sodium rushing into the cell generates an action potential Once started, muscle contraction cannot be stopped Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
The Sliding Filament Theory of Muscle Contraction Activation by nerve causes myosin heads (cross bridges) to attach to binding sites on the thin filament Myosin heads then bind to the next site of the thin filament pulls them towards the center of the sarcomere Figure 6.7 Slide 6.17a
The Sliding Filament Theory of Muscle Contraction This continued action causes a sliding of the myosin along the actin The result is that the muscle is shortened (contracted) Figure 6.7 Slide 6.17b
The Sliding Filament Theory of Muscle Contraction This continued action causes a sliding of the myosin along the actin The result is that the muscle is shortened (contracted) Figure 6.7 Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
The Sliding Filament Theory Figure 6.8 Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Contraction of a Skeletal Muscle Muscle fiber contraction is “all or none” Within a skeletal muscle, not all fibers may be stimulated during the same interval Different combinations of muscle fiber contractions may give differing responses Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Contraction of a Skeletal Muscle Graded responses – different degrees of skeletal muscle shortening Graded responses can be produced by changing: The frequency of muscle stimulation The number of muscle cells being stimulated at one time Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Graded Responses Twitch Single, brief contraction Not a normal muscle function Figure 6.9a, b Slide 6.20a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Graded Responses Tetanus (summing of contractions) One contraction is immediately followed by another The muscle does not completely return to a resting state The effects are added Figure 6.9a, b Slide 6.20b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Graded Responses Unfused (incomplete) tetanus Some relaxation occurs between contractions The results are summed Figure 6.9a, b Figure 6.9c,d Slide 6.21a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Graded Responses Fused (complete) tetanus No evidence of relaxation before the following contractions The result is a sustained muscle contraction Figure 6.9a, b Figure 6.9c,d Slide 6.21b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscle Response to Strong Stimuli Muscle force depends upon the number of fibers stimulated More fibers contracting results in greater muscle tension Muscles can continue to contract unless they run out of energy Slide 6.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Energy for Muscle Contraction Initially, muscles used stored ATP for energy Bonds of ATP are broken to release energy Only 4-6 seconds worth of ATP is stored by muscles After this initial time, other pathways must be utilized to produce ATP Slide 6.23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Energy for Muscle Contraction Direct phosphorylation Muscle cells contain creatine phosphate (CP) CP is a high-energy molecule After ATP is depleted, ADP is left CP transfers energy to ADP, to regenerate ATP CP supplies are exhausted in about 20 seconds Slide 6.24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10a
Energy for Muscle Contraction Aerobic Respiration Series of metabolic pathways that occur in the mitochondria Glucose is broken down to carbon dioxide and water, releasing energy This is a slower reaction that requires continuous oxygen Figure 6.10c Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Energy for Muscle Contraction Anaerobic glycolysis Reaction that breaks down glucose without oxygen Glucose is broken down to pyruvic acid to produce some ATP Pyruvic acid is converted to lactic acid Slide 6.26a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10b
Energy for Muscle Contraction Anaerobic glycolysis (continued) This reaction is not as efficient, but is fast Huge amounts of glucose are needed Lactic acid produces muscle fatigue Slide 6.26b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10b
Muscle Fatigue and Oxygen Debt When a muscle is fatigued, it is unable to contract even with a stimulus The common reason for muscle fatigue is oxygen debt Oxygen must be “repaid” to tissue to remove oxygen debt Oxygen is required to get rid of accumulated lactic acid Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less Slide 6.27 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Muscle Contractions Isotonic contractions Myofilaments are able to slide past each other during contractions The muscle shortens Isometric contractions Tension in the muscles increases The muscle is unable to shorten Slide 6.28 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscle Tone Some fibers are contracted even in a relaxed muscle Different fibers contract at different times to provide muscle tone The process of stimulating various fibers is under involuntary control Slide 6.29 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Effect of Exercise on Muscles Exercise increases muscle size, strength, and endurance Aerobic (endurance), exercise (biking, jogging) results in stronger, more flexible muscles with greater resistance to fatigue Makes body metabolism more efficient Improves digestion, coordination Resistance (isometric), exercise muscle size and strength Slide 6.29
Effects of Exercise on Muscle Results of increased muscle use Increase in muscle size Increase in muscle strength Increase in muscle efficiency Muscle becomes more fatigue resistant Slide 6.31 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscles and Body Movements Movement is attained due to a muscle moving an attached bone Figure 6.12 Slide 6.30a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscles and Body Movements Muscles are attached to at least two points Origin – attachment to a immoveable bone Insertion – attachment to an movable bone Figure 6.12 Slide 6.30b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Ordinary Body Movements Flexion Decreased the angle of the joint Brings two bones closer together Typical hinge joints like knee and elbow Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Ordinary Body Movements Extension Opposite of flexion Increases angle between two bones Rotation Movement of a bone around its longitudinal axis Common example of ball-and-socket Slide 6.32
Types of Ordinary Body Movements Abduction Movement of a limb away from the midline Adduction Movement of a limb towards the midline Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Ordinary Body Movements Circumduction Common in ball-and socket joints Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Body Movements Figure 6.13 Slide 6.33 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Special Movements Dorsifelxion Plantar flexion Inversion Eversion Supination Pronation Opposition Slide 6.34 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Muscles Prime mover – muscle with the major responsibility for a certain movement Antagonist – muscle that opposes or reverses a prime mover Synergist – muscle that aids a prime mover in a movement and helps prevent rotation Fixator – stabilizes the origin of a prime mover Slide 6.35 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Naming of Skeletal Muscles Direction of muscle fibers Example: rectus (straight) Relative size of the muscle Example: maximus (largest) Slide 6.36a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Naming of Skeletal Muscles Location of the muscle Example: many muscles are named for bones (e.g., temporalis) Number of origins Example: triceps (three heads) Slide 6.36b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Naming of Skeletal Muscles Location of the muscles origin and insertion Example: sterno (on the sternum) Shape of the muscle Example: deltoid (triangular) Action of the muscle Example: flexor and extensor (flexes or extends a bone) Slide 6.37 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Head and Neck Muscles Figure 6.14 Slide 6.38 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Trunk Muscles Figure 6.15 Slide 6.39 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Deep Trunk and Arm Muscles Figure 6.16 Slide 6.40 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscles of the Pelvis, Hip, and Thigh Figure 6.18c Slide 6.41 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Muscles of the Lower Leg Figure 6.19 Slide 6.42 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Superficial Muscles: Anterior Figure 6.20 Slide 6.43 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Superficial Muscles: Posterior Figure 6.21 Slide 6.44 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings