Created by Tom Wegleitner, Centreville, Virginia Section 4-5 The Poisson Distribution.

Slides:



Advertisements
Similar presentations
Lecture Slides Elementary Statistics Eleventh Edition
Advertisements

Exponential Distribution. = mean interval between consequent events = rate = mean number of counts in the unit interval > 0 X = distance between events.
1 Pertemuan 06 Peluang Beberapa Sebaran Khusus Peubah Acak Diskrit Mata kuliah: A Statistik Ekonomi Tahun: 2010.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-4.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
MATH 1107 Introduction to Statistics
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 6-6 Normal as Approximation to Binomial Created by.
Probability Distributions
Chapter 4 Probability Distributions
Statistics Lecture 11.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-2.
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
Lecture Slides Elementary Statistics Twelfth Edition
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Class notes for ISE 201 San Jose State University
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
The Poisson Probability Distribution The Poisson probability distribution provides a good model for the probability distribution of the number of “rare.
This is a discrete distribution. Poisson is French for fish… It was named due to one of its uses. For example, if a fish tank had 260L of water and 13.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 6 The Normal Probability Distribution
JMB Ch6 Lecture 3 revised 2 EGR 252 Fall 2011 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Binomial Distributions Calculating the Probability of Success.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Poisson Random Variable Provides model for data that represent the number of occurrences of a specified event in a given unit of time X represents the.
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Geometric Distribution
Probabilistic and Statistical Techniques 1 Lecture 19 Eng. Ismail Zakaria El Daour 2010.
Poisson Probability Distributions
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Biostatistics Class 3 Discrete Probability Distributions 2/8/2000.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Copyright © 2009 Pearson Education, Inc. Chapter 17 Probability Models.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
© 2005 McGraw-Hill Ryerson Ltd. 5-1 Statistics A First Course Donald H. Sanders Robert K. Smidt Aminmohamed Adatia Glenn A. Larson.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-5 Poisson Probability Distributions.
Methodology Solving problems with known distributions 1.
Lesson 6 - R Discrete Probability Distributions Review.
4.3 More Discrete Probability Distributions NOTES Coach Bridges.
Probability Distributions, Discrete Random Variables
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7B PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES ( POISSON DISTRIBUTION)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Central Limit Theorem Let X 1, X 2, …, X n be n independent, identically distributed random variables with mean  and standard deviation . For large n:
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Unit 4 Review. Starter Write the characteristics of the binomial setting. What is the difference between the binomial setting and the geometric setting?
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chap 5-1 Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition.
2.2 Discrete Random Variables 2.2 Discrete random variables Definition 2.2 –P27 Definition 2.3 –P27.
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
At Fontaine Lake Camp on Lake Athabasca in northern Canada, history shows that about 30% of the guests catch lake trout over 20 pounds on a 4-day fishing.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-3.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
The Poisson probability distribution
The Poisson Probability Distribution
Poisson Distribution.
Lecture Slides Elementary Statistics Eleventh Edition
Poisson Probability Distributions
Elementary Statistics
Chapter 4 Discrete Probability Distributions.
Continuous Random Variable Normal Distribution
Lecture Slides Elementary Statistics Tenth Edition
Elementary Statistics
The Binomial Distributions
Each Distribution for Random Variables Has:
Uniform Probability Distribution
Presentation transcript:

Created by Tom Wegleitner, Centreville, Virginia Section 4-5 The Poisson Distribution

Definition The Poisson distribution is a discrete probability distribution that applies to occurrences of some event over a specified interval. The random variable x is the number of occurrences of the event in an interval. The interval can be time, distance, area, volume, or some similar unit. P(x) = where e  µ x e -µ x!x! Formula 223

Poisson Distribution Requirements  The random variable x is the number of occurrences of an event over some interval.  The occurrences must be random.  The occurrences must be independent of each other.  The occurrences must be uniformly distributed over the interval being used. Parameters  The mean is µ.  The standard deviation is  = µ. 224

Difference from a Binomial Distribution The Poisson distribution differs from the binomial distribution in these fundamental ways:  The binomial distribution is affected by the sample size n and the probability p, whereas the Poisson distribution is affected only by the mean μ.  In a binomial distribution the possible values of the random variable x are 0, 1,... n, but a Poisson distribution has possible x values of 0, 1,..., with no upper limit. 224

Example World War II Bombs In analyzing hits by V-1 buzz bombs in World War II, South London was subdivided into 576 regions, each with an area of 0.25 km 2. A total of 535 bombs hit the combined area of 576 regions If a region is randomly selected, find the probability that it was hit exactly twice. The Poisson distribution applies because we are dealing with occurrences of an event (bomb hits) over some interval (a region with area of 0.25 km 2 ). 224

Example The mean number of hits per region is number of bomb hits number of regions The probability of a particular region being hit exactly twice is P(2) =

Poisson as Approximation to Binomial Rule of Thumb  n  100  np  10 The Poisson distribution is sometimes used to approximate the binomial distribution when n is large and p is small. 225

Poisson as Approximation to Binomial - μ Value for μ  = n p  n  100  np 

Recap In this section we have discussed:  Definition of the Poisson distribution.  Poisson distribution requirements.  Poisson approximation to the binomial.  Requirements for the Poisson distribution.