Introduction to Information Retrieval Introduction to Information Retrieval ΜΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Εισαγωγή στο.

Slides:



Advertisements
Similar presentations
Lucene in action Information Retrieval A.A – P. Ferragina, U. Scaiella – – Dipartimento di Informatica – Università di Pisa –
Advertisements

Assignment 2: Full text search with Lucene Mathias Mosolf, Alexander Frenzel.
Lucene Tutorial Based on Lucene in Action Michael McCandless, Erik Hatcher, Otis Gospodnetic.
Introduction to Information Retrieval Introduction to Information Retrieval Lucene Tutorial Chris Manning and Pandu Nayak.
Chapter 5: Introduction to Information Retrieval
© Copyright 2012 STI INNSBRUCK Apache Lucene Ioan Toma based on slides from Aaron Bannert
Advanced Indexing Techniques with Apache Lucene - Payloads Advanced Indexing Techniques with Michael Busch
Advanced Indexing Techniques with
Query Models Use Types What do search engines do.
The Lucene Search Engine Kira Radinsky Modified by Amit Gross to Lucene 4 Based on the material from: Thomas Paul and Steven J. Owens.
Lucene in action Information Retrieval A.A – P. Ferragina, U. Scaiella – – Dipartimento di Informatica – Università di Pisa –
Lucene Part3‏. Lucene High Level Infrastructure When you look at building your search solution, you often find that the process is split into two main.
Information Retrieval in Practice
The Lucene Search Engine Kira Radinsky Based on the material from: Thomas Paul and Steven J. Owens.
Parametric search and zone weighting Lecture 6. Recap of lecture 4 Query expansion Index construction.
Generalized Vector Space Model Definition Let k i be a vector associated with the index term k i. Independence of index terms in the vector model implies.
Introduction to Lucene Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
Overview of Search Engines
Introduction to Information Retrieval Introduction to Information Retrieval Lucene Tutorial Chris Manning, Pandu Nayak, and Prabhakar Raghavan.
Full-Text Search with Lucene Yonik Seeley 02 May 2007 Amsterdam, Netherlands.
Full-Text Search with Lucene Yonik Seeley 02 May 2007 Amsterdam, Netherlands slides:
1 Introduction to Lucene Rong Jin. What is Lucene ?  Lucene is a high performance, scalable Information Retrieval (IR) library Free, open-source project.
Apache Lucene in LexGrid. Lucene Overview High-performance, full-featured text search engine library. Written entirely in Java. An open source project.
M. Taimoor Khan * Java Server Pages (JSP) is a server-side programming technology that enables the creation of dynamic,
JSP Standard Tag Library
ASP.NET Programming with C# and SQL Server First Edition
Softvérové knižnice a systémy Vyhľadávanie informácií Michal Laclavík.
CS621 : Seminar-2008 DEEP WEB Shubhangi Agrawal ( )‏ Jayalekshmy S. Nair ( )‏
1 Lucene Jianguo Lu School of Computer Science University of Windsor.
1 PHP and MySQL. 2 Topics  Querying Data with PHP  User-Driven Querying  Writing Data with PHP and MySQL PHP and MySQL.
Lucene Boot Camp I Grant Ingersoll Lucid Imagination Nov. 3, 2008 New Orleans, LA.
Lucene Performance Grant Ingersoll November 16, 2007 Atlanta, GA.
Vyhľadávanie informácií Softvérové knižnice a systémy Vyhľadávanie informácií Michal Laclavík.
Chapter 7 Java Server Pages. Objectives Explain how the separation of concerns principle applies to JSP Describe the operation and life-cycle of a JSP.
Lucene Part2. Lucene Jarkarta Lucene ( is a high- performance, full-featured, java, open-source, text search engine.
Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.
Chapter 8 Cookies And Security JavaScript, Third Edition.
1 Module Objective & Outline Module Objective: After completing this Module, you will be able to, appreciate java as a programming language, write java.
Lucene Part1 ‏. Lucene Use Case Store data in a 2 dimensional way How do we do this. Spreadsheet Relational Database X/Y.
Indexing UMLS concepts with Apache Lucene Julien Thibault University of Utah Department of Biomedical Informatics.
Chapter 6: Information Retrieval and Web Search
Search Engines. Search Strategies Define the search topic(s) and break it down into its component parts What terms, words or phrases do you use to describe.
Lucene-Demo Brian Nisonger. Intro No details about Implementation/Theory No details about Implementation/Theory See Treehouse Wiki- Lucene for additional.
“ Lucene.Net is a source code, class-per-class, API-per-API and algorithmatic port of the Java Lucene search engine to the C# and.NET ”
Iccha Sethi Serdar Aslan Team 1 Virginia Tech Information Storage and Retrieval CS 5604 Instructor: Dr. Edward Fox 10/11/2010.
Core Java Introduction Byju Veedu Ness Technologies httpdownload.oracle.com/javase/tutorial/getStarted/intro/definition.html.
Design a full-text search engine for a website based on Lucene
 2008 Pearson Education, Inc. All rights reserved JavaScript: Introduction to Scripting.
JAVA BEANS JSP - Standard Tag Library (JSTL) JAVA Enterprise Edition.
8 Chapter Eight Server-side Scripts. 8 Chapter Objectives Create dynamic Web pages that retrieve and display database data using Active Server Pages Process.
Chapter 11: Advanced Inheritance Concepts. Objectives Create and use abstract classes Use dynamic method binding Create arrays of subclass objects Use.
1 Java Server Pages A Java Server Page is a file consisting of HTML or XML markup into which special tags and code blocks are inserted When the page is.
Lucene Jianguo Lu.
©2003 Paula Matuszek GOOGLE API l Search requests: submit a query string and a set of parameters to the Google Web APIs service and receive in return a.
Presented By:. What is JavaHelp: Most software developers do not look forward to spending time documenting and explaining their product. JavaSoft has.
Lucene : Text Search IG5 – TILE Esther Pacitti. Basic Architecture.
Information Retrieval in Practice
ΠΛΕ70: Ανάκτηση Πληροφορίας
Lucene Tutorial Chris Manning and Pandu Nayak
Jianguo Lu School of Computer Science University of Windsor
Searching AND INDEXING Big data
Search Engine Architecture
Query Models Use Types What do search engines do.
CS276 Lucene Section.
Searching and Indexing
Chapter 3: Using Methods, Classes, and Objects
Lucene in action Information Retrieval A.A
Lucene/Solr Architecture
Getting Started With Solr
Table of Contents 1) Understanding Lucene 2) Lucene Indexing
Presentation transcript:

Introduction to Information Retrieval Introduction to Information Retrieval ΜΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Εισαγωγή στο Lucene. 1

Introduction to Information Retrieval Τι είναι;  Open source Java library for IR (indexing and searching)  Lets you add search to your application, not a complete search system by itself -- software library not an application  Written by Doug Cutting  Used by LinkedIn, Twitter Trends, Netflix … and many more (see )  Ports/integrations to other languages  Python ( ) C/C++, C#, Ruby, Perl, PHP, …  Beyond core jar, a number of extension modules  contrib modules

Introduction to Information Retrieval Πηγές  Lucene:  Lucene in Action:  Code samples available for download πολύ χρήσιμο  JUnit:  Some examples are JUnit test cases  Automatically executes all methods with public void test-XXX() signature

Introduction to Information Retrieval Lucene in a search system Raw Content Acquire content Build document Analyze document Index document Index Users Search UI Build query Render results Run query SEARCH INDEX

Introduction to Information Retrieval Lucene in a search system: index Raw Content Acquire content Build document Analyze document Index document Index INDEX Steps 1.Acquire content 2.Build content 3.Analyze documents 4.Index documents

Introduction to Information Retrieval Lucene in a search system: index Acquire content (not supported by core Lucid) Depending on type  Crawler or spiders (web)  Specific APIs provided by the application (e.g., Twitter, FourSquare)  Complex software if scattered at various location, etc Additional issues  Access Control Lists  Online/real-time Complex documents (e.g., XML, relational databases, JSON etc) Solr (Tika, chapter 7)

Introduction to Information Retrieval Lucene in a search system: index Build document (not supported by core Lucid) A document is the unit of search Each document consists of separately named fields with values (title, body, etc) What constitutes a document and what are its fields? Lucene provides an API for building fields and documents Other issues (not handled)  Extract text from document (if binary)  Handle markups (XML, HTML)  Add additional fields (semantic analysis)  Boost individual files  At indexing time (per document and field, section 2.5)  At query time (section 5.7)

Introduction to Information Retrieval Lucene in a search system: index Analyze document (supported by core Lucid) Given a document -> extract its tokens Details in Chapter 4 Issues  handle compounds  case sensitivity  inject synonyms  spell correction  collapse singular and plural  stemmer (Porter’s)

Introduction to Information Retrieval Lucene in a search system: index Index document (supported by core Lucid) Details in Chapter 2

Introduction to Information Retrieval Lucene in a search system: search Index Users Search UI Build query Render results Run query SEARCH STEPS Enter query (UI) Build query Run search query Render results (UI)

Introduction to Information Retrieval Lucene in a search system: search Search User Interface (UI) No default search UI, but many useful contrib modules General instructions  Simple (do not present a lot of options in the first page) a single search box better than 2-step process  Result presentation is important  highlight matches (highlighter contrib modules, section 8.3&8.4)  make sort order clear, etc  Be transparent: e.g., explain if you expand search for synonyms, autocorrect errors (spellchecker contrib module, section 8.5, etc)

Introduction to Information Retrieval Lucene in a search system: search Build query (supported by core Lucid) Provides a package QueryParser: process the user text input into a Query object (Chapter 3) Query may contain Boolean operators, phrase queries, wildcard terms

Introduction to Information Retrieval Lucene in a search system: search Search query (supported by core Lucid) See Chapter 6 Three models  Pure Boolean model (no sort)  Vector space model  Probabilistic model Lucene combines Boolean and vector model – select which one on a search-by-search basis Customize

Introduction to Information Retrieval Lucene in a search system: search Render results (supported by core Lucid) UI issues

Introduction to Information Retrieval Lucene in action Get code from the book  Command line Indexer  …/lia2e/src/lia/meetlucene/Indexer.java  Command line Searcher  …/lia2e3/src/lia/meetlucene/Searcher.java

Introduction to Information Retrieval How Lucene models content  A Document is the atomic unit of indexing and searching  A Document contains Field s  Field s have a name and a value  Examples: Title, author, date, abstract, body, URL, keywords,..  Different documents can have different fields  You have to translate raw content into Fields  Search a field using name:term, e.g., title:lucene

Introduction to Information Retrieval Documents and Fields Parametric or zone indexing There is one ( parametric) index for each field Also, supports weighted field scoring

Basic Application IndexWriterIndexSearcher Lucene Index Document super_name: Spider-Man name: Peter Parker category: superhero powers: agility, spider-sense Hits (Matching Docs) Query (powers:agility) addDocument()search() 1.Get Lucene jar file 2.Write indexing code to get data and create Document objects 3.Write code to create query objects 4.Write code to use/display results

Introduction to Information Retrieval Core indexing classes  IndexWriter  Central component that allows you to create a new index, open an existing one, and add, remove, or update documents in an index  Directory  Abstract class that represents the location of an index  Analyzer  Extracts tokens from a text stream

Introduction to Information Retrieval Creating an IndexWriter import org.apache.lucene.index.IndexWriter; import org.apache.lucene.store.Directory; import org.apache.lucene.analysis.standard.StandardAnalyzer;... private IndexWriter writer;... public Indexer(String indexDir) throws IOException { Directory dir = FSDirectory.open(new File(indexDir)); writer = new IndexWriter( dir, new StandardAnalyzer(Version.LUCENE_30), true, IndexWriter.MaxFieldLength.UNLIMITED); }

Introduction to Information Retrieval Core indexing classes  Document  Represents a collection of named Field s.  Text in these Field s are indexed.  Field  Note: Lucene Field s can represent both “fields” and “zones” as described in the textbook

Introduction to Information Retrieval A Document contains Field s import org.apache.lucene.document.Document; import org.apache.lucene.document.Field;... protected Document getDocument(File f) throws Exception { Document doc = new Document(); doc.add(new Field("contents”, new FileReader(f))) doc.add(new Field("filename”, f.getName(), Field.Store.YES, Field.Index.NOT_ANALYZED)); doc.add(new Field("fullpath”, f.getCanonicalPath(), Field.Store.YES, Field.Index.NOT_ANALYZED)); return doc; }

Introduction to Information Retrieval Index a Document with IndexWriter private IndexWriter writer;... private void indexFile(File f) throws Exception { Document doc = getDocument(f); writer.addDocument(doc); }

Introduction to Information Retrieval Indexing a directory private IndexWriter writer;... public int index(String dataDir, FileFilter filter) throws Exception { File[] files = new File(dataDir).listFiles(); for (File f: files) { if (... && (filter == null || filter.accept(f))) { indexFile(f); } return writer.numDocs(); }

Introduction to Information Retrieval Closing the IndexWriter private IndexWriter writer;... public void close() throws IOException { writer.close(); }

Introduction to Information Retrieval Field s Field s may  Be indexed or not  Indexed fields may or may not be analyzed (i.e., tokenized with an Analyzer )  Non-analyzed fields view the entire value as a single token (useful for URLs, paths, dates, social security numbers,...)  Be stored or not  Useful for fields that you’d like to display to users  Optionally store term vectors  Like a positional index on the Field ’s terms  Useful for highlighting, finding similar documents, categorization

Introduction to Information Retrieval Field construction Lots of different constructors import org.apache.lucene.document.Field Field(String name, String value, Field.Store store, // store or not Field.Index index, // index or not Field.TermVector termVector); value can also be specified with a Reader, a TokenStream, or a byte[]

Introduction to Information Retrieval Field options  Field.Store  NO : Don’t store the field value in the index  YES : Store the field value in the index  Field.Index  ANALYZED : Tokenize with an Analyzer  NOT_ANALYZED : Do not tokenize  NO : Do not index this field  Couple of other advanced options  Field.TermVector  NO : Don’t store term vectors  YES : Store term vectors  Several other options to store positions and offsets

Introduction to Information Retrieval Field vector options  TermVector.Yes  TermVector.With_POSITIONS  TermVector.With_OFFSETS  TermVector.WITH_POSITIONS_OFFSETS  TermVector.No

Introduction to Information Retrieval Using Field options IndexStoreTermVectorExample usage NOT_ANALYZEDYESNOIdentifiers, telephone/SSNs, URLs, dates,... ANALYZEDYESWITH_POSITIONS_OFFSETSTitle, abstract ANALYZEDNOWITH_POSITIONS_OFFSETSBody NOYESNODocument type, DB keys (if not used for searching) NOT_ANALYZEDNO Hidden keywords

Introduction to Information Retrieval Document import org.apache.lucene.document.Field  Constructor:  Document();  Methods  void add(Fieldable field); // Field implements // Fieldable  String get(String name); // Returns value of // Field with given // name  Fieldable getFieldable(String name); ... and many more

Introduction to Information Retrieval Multi-valued fields  You can add multiple Field s with the same name  Lucene simply concatenates the different values for that named Field Document doc = new Document(); doc.add(new Field(“author”, “chris manning”, Field.Store.YES, Field.Index.ANALYZED)); doc.add(new Field(“author”, “prabhakar raghavan”, Field.Store.YES, Field.Index.ANALYZED));...

Introduction to Information Retrieval Analyzer s Tokenizes the input text  Common Analyzer s  WhitespaceAnalyzer Splits tokens on whitespace  SimpleAnalyzer Splits tokens on non-letters, and then lowercases  StopAnalyzer Same as SimpleAnalyzer, but also removes stop words  StandardAnalyzer Most sophisticated analyzer that knows about certain token types, lowercases, removes stop words,...

Introduction to Information Retrieval Analysis examples “The quick brown fox jumped over the lazy dog”  WhitespaceAnalyzer  [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]  SimpleAnalyzer  [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]  StopAnalyzer  [quick] [brown] [fox] [jumped] [over] [lazy] [dog]  StandardAnalyzer  [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

Introduction to Information Retrieval More analysis examples  “XY&Z Corporation –  WhitespaceAnalyzer  [XY&Z] [Corporation] [-]  SimpleAnalyzer  [xy] [z] [corporation] [xyz] [example] [com]  StopAnalyzer  [xy] [z] [corporation] [xyz] [example] [com]  StandardAnalyzer  [xy&z] [corporation]

Introduction to Information Retrieval What’s inside an Analyzer ?  Analyzer s need to return a TokenStream public TokenStream tokenStream(String fieldName, Reader reader) TokenStream TokenizerTokenFilter ReaderTokenizerTokenFilter

Introduction to Information Retrieval Tokenizer s and TokenFilter s  Tokenizer  WhitespaceTokenizer  KeywordTokenizer  LetterTokenizer  StandardTokenizer ...  TokenFilter  LowerCaseFilter  StopFilter  PorterStemFilter  ASCIIFoldingFilter  StandardFilter ...

Introduction to Information Retrieval Adding/deleting Document s to/from an IndexWriter void addDocument(Document d); void addDocument(Document d, Analyzer a); Important: Need to ensure that Analyzer s used at indexing time are consistent with Analyzer s used at searching time // deletes docs containing term or matching // query. The term version is useful for // deleting one document. void deleteDocuments(Term term); void deleteDocuments(Query query);

Introduction to Information Retrieval Index format  Each Lucene index consists of one or more segments  A segment is a standalone index for a subset of documents  All segments are searched  A segment is created whenever IndexWriter flushes adds/deletes  Periodically, IndexWriter will merge a set of segments into a single segment  Policy specified by a MergePolicy  You can explicitly invoke optimize() to merge segments

Introduction to Information Retrieval Basic merge policy  Segments are grouped into levels  Segments within a group are roughly equal size (in log space)  Once a level has enough segments, they are merged into a segment at the next level up

Introduction to Information Retrieval Core searching classes

Introduction to Information Retrieval Core searching classes  IndexSearcher  Central class that exposes several search methods on an index (a class that “opens” the index) requires a Directory instance that holds the previously created index  Term  Basic unit of searching, contains a pair of string elements (field and word)  Query  Abstract query class. Concrete subclasses represent specific types of queries, e.g., matching terms in fields, boolean queries, phrase queries, …, most basic TermQuery  QueryParser  Parses a textual representation of a query into a Query instance

Introduction to Information Retrieval Creating an IndexSearcher import org.apache.lucene.search.IndexSearcher;... public static void search(String indexDir, String q) throws IOException, ParseException { Directory dir = FSDirectory.open( new File(indexDir)); IndexSearcher is = new IndexSearcher(dir);... }

Introduction to Information Retrieval Query and QueryParser import org.apache.lucene.search.Query; import org.apache.lucene.queryParser.QueryParser;... public static void search(String indexDir, String q) throws IOException, ParseException... QueryParser parser = new QueryParser(Version.LUCENE_30, "contents”, new StandardAnalyzer( Version.LUCENE_30)); Query query = parser.parse(q);... }

Introduction to Information Retrieval Core searching classes (contd.)  TopDocs  Contains references to the top N documents returned by a search (the docID and its score)  ScoreDoc  Provides access to a single search result

Introduction to Information Retrieval search() returns TopDoc s import org.apache.lucene.search.TopDocs;... public static void search(String indexDir, String q) throws IOException, ParseException... IndexSearcher is =...;... Query query =...;... TopDocs hits = is.search(query, 10); }

Introduction to Information Retrieval TopDoc s contain ScoreDoc s import org.apache.lucene.search.ScoreDoc;... public static void search(String indexDir, String q) throws IOException, ParseException... IndexSearcher is =...;... TopDocs hits =...;... for(ScoreDoc scoreDoc : hits.scoreDocs) { Document doc = is.doc(scoreDoc.doc); System.out.println(doc.get("fullpath")); }

Introduction to Information Retrieval Closing IndexSearcher public static void search(String indexDir, String q) throws IOException, ParseException... IndexSearcher is =...;... is.close(); }

Introduction to Information Retrieval IndexSearcher  Constructor:  IndexSearcher(Directory d);  deprecated

Introduction to Information Retrieval IndexReader IndexSearcher IndexReader Directory QueryTopDocs

Introduction to Information Retrieval IndexSearcher  Constructor:  IndexSearcher(Directory d);  deprecated  IndexSearcher(IndexReader r);  Construct an IndexReader with static method IndexReader.open(dir)

Introduction to Information Retrieval Searching a changing index Directory dir = FSDirectory.open(...); IndexReader reader = IndexReader.open(dir); IndexSearcher searcher = new IndexSearcher(reader); Above reader does not reflect changes to the index unless you reopen it. Reopen ing is more resource efficient than open ing a new IndexReader. IndexReader newReader = reader.reopen(); If (reader != newReader) { reader.close(); reader = newReader; searcher = new IndexSearcher(reader); }

Introduction to Information Retrieval Near-real-time search IndexWriter writer =...; IndexReader reader = writer.getReader(); IndexSearcher searcher = new IndexSearcher(reader); Now let us say there’s a change to the index using writer // reopen() and getReader() force writer to flush IndexReader newReader = reader.reopen(); if (reader != newReader) { reader.close(); reader = newReader; searcher = new IndexSearcher(reader); }

Introduction to Information Retrieval IndexSearcher  Methods  TopDocs search(Query q, int n);  Document doc(int docID);

Introduction to Information Retrieval QueryParser  Constructor  QueryParser(Version matchVersion, String defaultField, Analyzer analyzer);  Parsing methods  Query parse(String query) throws ParseException; ... and many more

Introduction to Information Retrieval QueryParser syntax examples Query expressionDocument matches if… javaContains the term java in the default field java junit java OR junit Contains the term java or junit or both in the default field (the default operator can be changed to AND) +java +junit java AND junit Contains both java and junit in the default field title:antContains the term ant in the title field title:extreme –subject:sportsContains extreme in the title and not sports in subject (agile OR extreme) AND javaBoolean expression matches title:”junit in action”Phrase matches in title title:”junit action”~5Proximity matches (within 5) in title java*Wildcard matches java~Fuzzy matches lastmodified:[1/1/09 TO 12/31/09] Range matches

Introduction to Information Retrieval Construct Query s programmatically  TermQuery  Constructed from a Term  TermRangeQuery  NumericRangeQuery  PrefixQuery  BooleanQuery  PhraseQuery  WildcardQuery  FuzzyQuery  MatchAllDocsQuery

Introduction to Information Retrieval TopDocs and ScoreDoc  TopDocs methods  Number of documents that matched the search totalHits  Array of ScoreDoc instances containing results scoreDocs  Returns best score of all matches getMaxScore()  ScoreDoc methods  Document id doc  Document score score

Introduction to Information Retrieval Scoring  Scoring function uses basic tf-idf scoring with  Programmable boost values for certain fields in documents  Length normalization  Boosts for documents containing more of the query terms  IndexSearcher provides an explain() method that explains the scoring of a document

Introduction to Information Retrieval Πηγές  Lucene can be downloaded from  Solr can be downloaded from

Introduction to Information Retrieval Based on “Lucene in Action”  By Michael McCandless, Erik Hatcher, Otis Gospodnetic

Introduction to Information Retrieval ΤΕΛΟΣ Μαθήματος Ερωτήσεις? 62 Υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search (Stanford)