Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas Vladimir A. Zenin, Ilya P. Radko, Valentyn S. Volkov.

Slides:



Advertisements
Similar presentations
Nanophotonics Class 2 Surface plasmon polaritons.
Advertisements

1. Confinement-Induced Loss – Penultimate Limit in Plasmonics 2
Nanophotonic Devices for Quantum Optics Feb 13, 2013 GCOE symposium Takao Aoki Waseda University.
Plasmonic Imaging for Optical Lithography X-ray Wavelengths at Optical Frequencies Experiments: Progress and Plans Yunping Yang Josh Conway Eli Yablonovitch.
©UCL TH IEEE/LEOS Conference Puerto Rico, 7-11 th November, 2004 Multimode Laterally Tapered Bent Waveguide Ioannis Papakonstantinou, David R.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY Y. A. Vlasov and S. J. McNab.
Properties of Photonic and Plasmonic Resonance Devices Jae Woong Yoon, Kyu Jin Lee, Manoj Niraula, Mohammad Shyiq Amin, and Robert Magnusson Dept. of Electrical.
Optical and thermal imaging of nanostructures with a scanning fluorescent particle as a probe. Near-field experiments : ESPCI, Paris, FranceLionel Aigouy,
1 Au-shell cavity mode - Mie calculations R core = 228 nm R total = 266 nm t Au = 38 nm medium = silica cavity mode 700 nm cavity mode 880 nm 880 nm =
Resonances and optical constants of dielectrics: basic light-matter interaction.
OUTLINE Introduction „Tera-to-Nano“: Our Novel Near-Field Antenna 80 GHz CW Frequency Domain Measurements Picosecond Pulse Time Domain Measurements 2D.
Taming light with plasmons – theory and experiments Aliaksandr Rahachou, ITN, LiU Kristofer Tvingstedt, IFM, LiU , Hjo.
Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺.
Nasimuddin1 and Karu Esselle2
MSEG 667 Nanophotonics: Materials and Devices 6: Surface Plasmon Polaritons Prof. Juejun (JJ) Hu
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Analysis of the Propagation of Light along an Array of Nanorods Using the Generalized Multipole Technique Nahid Talebi and Mahmoud Shahabadi Photonics.
Vladimir Bordo NanoSyd, Mads Clausen Institute Syddansk Universitet, Denmark Waveguiding in nanofibers.
Apertureless Scanning Near-field Optical Microscopy: a comparison between homodyne and heterodyne approaches Journal Club Presentation – March 26 th, 2007.
Optical Coherence Tomography Zhongping Chen, Ph.D. Optical imaging in turbid media Coherence and interferometry Optical coherence.
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Sharp resonance of multimode periodic waveguide open resonator defined in SOI Ph.D student: Nikolay Piskunov Supervisor: Henri Benisty Institut d’Optique.
Chris Chase EE235 4/9/07. Chris Chase, EE235 2 Introduction Nanowire Lasers Applications Potential solution for a laser integrated on silicon Nanowires.
RESEARCH ON BEAM SIZE MONITORS S. Csorna, Vanderbilt U. LCCOM2, June 30, ’02, Santa Cruz Proposal for Non-Intercepting Beam Size Diagnosis Using Diffraction.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry Michael Reinstaedtler, Ute Rabe,
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Workshop SLAC 7/27/04 M. Zolotorev Fluctuation Properties of Electromagnetic Field Max Zolotorev CBP AFRD LBNL.
Effect of Mutual Coupling on the Performance of Uniformly and Non-
Demonstration of Two-Plasmon Quantum Interference Hyunseok Lee 1.
Light Propagation in Gbit LANS John S. Abbott Engineering Associate -- Mathematics Corning Incorporated HPME Corning, NY 14831
Surface Plasmons devices and leakage radiation microscopy
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
Thomas Søndergaard, 3rd Workshop on Numerical Methods for Optical Nano Structures, July 10, 2007 Greens function integral equation methods for plasmonic.
Modeling Plasmonic Effects in the Nanoscale Brendan McNamara, Andrei Nemilentsau and Slava V. Rotkin Department of Physics, Lehigh University Methodology.
Double carbon nanotube antenna as a detector of modulated terahertz radiation V. Semenenko 1, V. Leiman 1, A. Arsenin 1, Yu. Stebunov 1, and V. Ryzhii.
EM scattering from semiconducting nanowires and nanocones Vadim Karagodsky  Enhanced Raman scattering from individual semiconductor nanocones and nanowires,
Free Electron Lasers (I)
Outline Damping mechanisms  Plasmons in ribbons Experimental results Graphene Nanophotonics Benasque, 2013, Mar Mar 08 Momentum dependence and losses.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY
Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon J. Phys. Chem. Lett. 1, (2010) Ashida Lab. Shinichiro.
Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy Thomas Jefferson National Accelerator Facility FEL Bunch length.
The design of dielectric environment for ultra long lifetime of graphene plasmon Dr. Qing Dai 22/10/2015.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Plasmonic vector near-field for composite interference, SPP switch and optical simulator Tao Li(李涛) National Laboratory of Solid State.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Extraordinary Gas Loading For Surface Acoustic Wave Phononic Crystals Ben Ash Supervisors – G. R. Nash, P. Vukusic EPSRC Centre for Doctoral Training in.
Single Molecule Raman Detection with a Composite Microresonator and Metal Nanocavity System Xudong Fan (University of Missouri – Columbia) WGM field profile.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
기계적 변형이 가능한 능동 플라즈모닉 기반 표면증강라만분광 기판 Optical Society of Korea Winter Annual Meting 강민희, 김재준, 오영재, 정기훈 바이오및뇌공학과, KAIST Stretchable Active-Plasmonic.
All-Dielectric Metamaterials: A Platform for Strong Light-Matter Interactions Jianfa Zhang* (College of Optoelectronic Science and Engineering, National.
L. Corner and T. Hird John Adams Institute for Accelerator Science, Oxford University, UK 1AAC, USA, 2016 The efficient generation of radially polarised.
Plasmonic waveguide filters with nanodisk resonators
Space charge studies at the SPS
Cavity Ring-Down Spectroscopy
Terahertz Spectroscopy of CdSe Quantum Dots
Hybrid plasmonic multichannel spectroscopic sensor platform
Status of Equatorial CXRS System Development
The M2 parameter in space ---beam quality factor
Ken-Chia Chang, and Ming-Dar Wei* *
HBP impedance calculations
Optical micro/nanofiber and its application
Volume 104, Issue 1, Pages (January 2013)
Fig. 1 Schematics of the experiment.
Atilla Ozgur Cakmak, PhD
Presentation transcript:

Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas Vladimir A. Zenin, Ilya P. Radko, Valentyn S. Volkov and Sergey I. Bozhevolnyi Centre for Nano Optics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark Andrei Andryieuski, Radu Malureanu and Andrei V. Lavrinenko DTU Fotonik, Technical University of Denmark, Oersteds pl. 343, 2800 Kongens Lyngby, Denmark Dmitri K. Gramotnev Nanophotonics Pty. Ltd., GPO Box 786, Albany Creek, Queensland 4035, Australia. Nanolight 2016, Benasque

Vladimir Zenin Theoretical principles of adiabatic nanofocusing

Vladimir Zenin Focusing of gap-SPP

Vladimir Zenin Focusing of SPP along metal cone

Vladimir Zenin Focusing of SPP along metal strip

Vladimir Zenin Nanofocusing with constant adiabatic parameter λ = 1500 nm γ =   0 max 0 1 μm Amplitude Phase Ohmic losses should be taken into account! n Silica w = 30 nm w = 1.5 μm

Vladimir Zenin Optimization of the combined taper L1L1 L2L nm 150 nm 30 nm Andrei Andryieuski For optimum parameters: Transmittance T total ≈ 40% Total FE ≈ 12

Vladimir Zenin Silica Transmission-mode s-SNOM Towards detector

Vladimir Zenin Transmission-mode s-SNOM Demodulation Detector Polarizer Beam splitter Telecom laser nm Oscillating mirror Parabolic mirror Amplitude |E| Phase  AFM tip

Vladimir Zenin µm Topo |E||E|Arg[E]|E||E| |E||E| |E||E| 30 nm60 nm100 nm200 nm Nanofocusing to strip waveguides 2 µm Radu Malureanu

Vladimir Zenin nm Discrete Fourier Transform (log scale) x kzkz 1.6k k 0 Global fitting parameters (complex): n, r + = |E||E| 10|E| Re[n] = 1.60 L prop = 4.5 μm R = |r| 2 = 0.10 Processing data |E||E| |E||E|Arg[E]

Vladimir Zenin Fitting with two modes

Vladimir Zenin Strip waveguide properties Mode profile Mode dispersion V. A. Zenin, R. Malureanu, I. P. Radko, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Near-field characterization of bound plasmonic modes in metal strip waveguides,” Opt. Express, 24(5), (2016).

Vladimir Zenin Estimation of the transmittance T out R out In R in x z 1.5 µm Fit T total ≈ 20% T single ≈ 81% T total ≈ 31% T single ≈ 56%

Vladimir Zenin Further increase in FE: gap in the nanowire E1E1 E2E2 Boundary conditions: ε 1 E 1 = ε 2 E 2 E 2 = E 1 ε 1 /ε 2 For 10 nm gap longitudinal FE ~ 22; FE = 22/3.8 ≈ 6.

Vladimir Zenin Further increase in FE: antenna excitation Antenna-coupled nanowireAntenna-coupled nanofocuser For 10 nm gap at resonant antenna length (240 nm) total FE ≈ 9. |E||E| 100 nm

Vladimir Zenin Experimental comparison TSNFt-TSNF a-TSNF V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, (2015).

Vladimir Zenin Conclusions Dispersion properties of strip waveguides ( w = 30, 60, 100, 200, 500, and 1500 nm) are investigated Optimized 2-section taper with transmittance T > 40% (sim. + exp.) results in the FE of ~12 (intensity enhancement of ~140) Resonantly coupled antenna further boosts intensity enhancement up to ~12000, with the enhanced field being evenly distributed over the gap volume of 30×30×10 nm 3