Operations Management Demand Forecasting. Session Break Up Conceptual framework Software Demonstration Case Discussion.

Slides:



Advertisements
Similar presentations
Forecasting.
Advertisements

Operations Management “Forecasting” Hardianto Iridiastadi, Ph.D.
Forecasting.
Forecasting OPS 370.
Operations Management Forecasting Chapter 4
Operations Management For Competitive Advantage © The McGraw-Hill Companies, Inc., 2001 C HASE A QUILANO J ACOBS ninth edition 1Forecasting Operations.
Strategic Capacity Planning Defined
T T18-03 Exponential Smoothing Forecast Purpose Allows the analyst to create and analyze the "Exponential Smoothing Average" forecast. The MAD.
Forecasting Demand ISQA 511 Dr. Mellie Pullman.
Qualitative Forecasting Methods
Forecasting Ross L. Fink.
1 Forecasting BA 339 Mellie Pullman. What is a Forecast? What and why might we wish to forecast?What and why might we wish to forecast?
CHAPTER 3 Forecasting.
Lecture 3 Forecasting CT – Chapter 3.
1 © The McGraw-Hill Companies, Inc., 2004 Chapter 12 Forecasting and Demand Management.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Chapter 12 Roberta Russell & Bernard.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Slides 13b: Time-Series Models; Measuring Forecast Error
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Operations and Supply Chain Management
Chapter 15 Demand Management & Forecasting
The Importance of Forecasting in POM
IES 371 Engineering Management Chapter 13: Forecasting
CHAPTER 3 FORECASTING.
Demand Management and Forecasting
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
© The McGraw-Hill Companies, Inc., 1998 Irwin/McGraw-Hill 2 Chapter 13 Forecasting u Demand Management u Qualitative Forecasting Methods u Simple & Weighted.
Demand Management and Forecasting
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
1 What Is Forecasting? Sales will be $200 Million!
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
Forecasting Professor Ahmadi.
1 DSCI 3023 Forecasting Plays an important role in many industries –marketing –financial planning –production control Forecasts are not to be thought of.
DAVIS AQUILANO CHASE PowerPoint Presentation by Charlie Cook F O U R T H E D I T I O N Forecasting © The McGraw-Hill Companies, Inc., 2003 chapter 9.
Operations Management For Competitive Advantage 1Forecasting Operations Management For Competitive Advantage Chapter 11.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
1-1 1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved.
Forecasting Operations Management For Competitive Advantage.
Demand Management and Forecasting Module IV. Two Approaches in Demand Management Active approach to influence demand Passive approach to respond to changing.
Operations Fall 2015 Bruce Duggan Providence University College.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Demand Management and Forecasting CHAPTER 10.
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Assignable variation Deviations with a specific cause or source. forecast bias or assignable variation or MSE? Click here for Hint.
Forecasting Production and Operations Management 3-1.
FORECAST 2 Exponential smoothing. 3a. Exponential Smoothing Assumes the most recent observations have the highest predictive value – gives more weight.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
3-1Forecasting Weighted Moving Average Formula w t = weight given to time period “t” occurrence (weights must add to one) The formula for the moving average.
TIME SERIES MODELS. Definitions Forecast is a prediction of future events used for planning process. Time Series is the repeated observations of demand.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Copyright © 2014 by McGraw-Hill Education (Asia). All rights reserved. 3 Forecasting.
Short-Term Forecasting
Forecasts.
Mechanical Engineering Haldia Institute of Technology
Demand Management and Forecasting
Chapter 13 Forecasting.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasting Elements of good forecast Accurate Timely Reliable
assignable variation Deviations with a specific cause or source.
Demand Management and Forecasting
Presentation transcript:

Operations Management Demand Forecasting

Session Break Up Conceptual framework Software Demonstration Case Discussion

Demand forecasting Forecasting involves making calculated prediction that can be used in planning and decision making process It includes both long term investment of overall demand and short term estimates for each product and service

Forecasting Methods A- Qualitative Models Delphi Method Nominal group technique B -Time series Simple moving average Weighted moving average Exponential Smoothing C - Causal Model Regression Analysis

Demand Management A Independent Demand: Finished Goods B(4) C(2) D(2)E(1) D(3)F(2) Dependent Demand: Raw Materials, Component parts, Sub-assemblies, etc.

Delphi Method l. Choose the experts to participate. There should be a variety of knowledgeable people in different areas. 2. Through a questionnaire (or ), obtain forecasts (and any premises or qualifications for the forecasts) from all participants. 3. Summarize the results and redistribute them to the participants along with appropriate new questions. 4. Summarize again, refining forecasts and conditions, and again develop new questions. 5. Repeat Step 4 if necessary. Distribute the final results to all participants.

Simple Moving Average Formula The simple moving average model assumes an average is a good estimator of future behavior. The formula for the simple moving average is: F t = Forecast for the coming period N = Number of periods to be averaged A t-1 = Actual occurrence in the past period for up to “n” periods

Simple Moving Average Problem Question: What is the 3 week moving average forecast for this data? Assume you only have 3 weeks and 5 weeks of actual demand data for the respective forecasts

Weighted Moving Average Formula While the moving average formula implies an equal weight being placed on each value that is being averaged, the weighted moving average permits an unequal weighting on prior time periods. w t = weight given to time period “t” occurrence. (Weights must add to one.) The formula for the moving average is:

Weighted Moving Average Problem Weights: t-1.5 t-2.3 t-3.2 Question: Given the weekly demand and weights, what is the forecast for the 4 th period or Week 4? Note that the weights place more emphasis on the most recent data, that is time period “t-1”.

Weighted Moving Average Problem (1) Solution F 4 = 0.5(720)+0.3(678)+0.2(650)=693.4

Exponential Smoothing Model Premise: The most recent observations might have the highest predictive value. Therefore, we should give more weight to the more recent time periods when forecasting. F t = F t-1 +  (A t-1 - F t-1 )  = smoothing constant

Example A recent out break of Dengue in Delhi has resulted India’s premier institution AIIMS in chaotic situation. The Institute wants to forecast expected number of patient in the coming week with the help of past data to make necessary arrangement in terms of bed, medicine etc The MRO has furnished following information

Question: What are the exponential smoothing forecasts for periods 2-5 using a =0.5? Assume F 1 =D 1

F 1 =820+(0.5)( )=820 F 3 =820+(0.5)( )=797.75

Simple Linear Regression Question: Given the data below, what is the simple linear regression model that can be used to predict sales?

Error measures Error - difference between actual value and predicted value Mean Absolute Deviation (MAD) – Average absolute error Mean Squared Error (MSE) – Average of squared error Mean Absolute Percent Error (MAPE) – Average absolute percent error

MAD, MSE, and MAPE MAD = Actualforecast   n MSE = Actualforecast ) - 2   n (

Example

Question: What is the MAD value given the forecast values in the table below? Mont h SalesForecast 1220N/A

The ideal MAD is zero. That would mean there is no forecasting error. The larger the MAD, the less the desirable the resulting model.

Thanks