COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | 19-22 ENERO 2015 P ROTOTYPE S OFTWARE F OR D ETERMINATION O F L ANDSLIDE S TATISTICS Istituto di Ricerca.

Slides:



Advertisements
Similar presentations
Introduction to GRCP Boualem RABTA Center for World Food Studies (SOW-VU) Vrije Universiteit - Amsterdam.
Advertisements

GIS IN GEOLOGY Miloš Marjanović Lesson
1 OBJECTIVES To generate a web-based system enables to assemble model configurations. to submit these configurations on different.
Lwando Kondlo Supervisor: Prof. Chris Koen University of the Western Cape 12/3/2008 SKA SA Postgraduate Bursary Conference Estimation of the parameters.
Spike Train Statistics Sabri IPM. Review of spike train  Extracting information from spike trains  Noisy environment:  in vitro  in vivo  measurement.
Experience of application of modern GIS-technologies for environmental monitoring tasks Prof., Dr. Cheremisina Evgenia, Dr.Lyubimova Anna.
Functions of GIS 30/04/2010. Major Functions of GIS 1. Data Capture Data used in GIS often come from many different sources, are of many types, and are.
Graphical Policy Analysis Tool Developed by Kevin Wheeler for USBR and CADSWES.
Using the Maryland Biological Stream Survey Data to Test Spatial Statistical Models A Collaborative Approach to Analyzing Stream Network Data Andrew A.
GIS and Drought Applications Keith Stellman Senior Hydrologist Lower Mississippi River Forecast Center Slidell, LA.
GIS Overview. What is GIS? GIS is an information system that allows for capture, storage, retrieval, analysis and display of spatial data.
T T Population Sampling Distribution Purpose Allows the analyst to determine the mean and standard deviation of a sampling distribution.
1 Pendahuluan Pertemuan 9 Matakuliah: H0062/Teori Sistem Tahun: 2006.
Statistics, data, and deterministic models NRCSE.
21 mars 2005 Development of an air quality forecast system for air quality survey networks Air Alpes Méditerranée : AIRES SYSTEM Air Pays de la Loire ASPA.
T T07-01 Sample Size Effect – Normal Distribution Purpose Allows the analyst to analyze the effect that sample size has on a sampling distribution.
The Calibration Process
Assessment of Extreme Rainfall in the UK Marie Ekström
A PREDICTION APPROACH TO AGRICULTURAL LAND USE ESTIMATION Ambrosio L., Marín C., Iglesias L., Montañés J., Rubio L.A. Universidad Politécnica Madrid. Spain.
1 D r a f t Life Cycle Assessment A product-oriented method for sustainability analysis UNEP LCA Training Kit Module k – Uncertainty in LCA.
Hydrologic Statistics
Title: Spatial Data Mining in Geo-Business. Overview  Twisting the Perspective of Map Surfaces — describes the character of spatial distributions through.
NCPP – needs, process components, structure of scientific climate impacts study approach, etc.
Updating Erosion Hazard Ratings in a Post-fire Assessment A GIS Tool for Soil Scientists.
LANDSLIDE SUCCEPTABILITY MAPPING (Case study of SRILANKA)
Weed mapping tools and practical approaches – a review Prague February 2014 Weed mapping tools and practical approaches – a review Prague February 2014.
International Institute for Geo-Information Science and Earth Observation (ITC) ISL 2004 RiskCity Application of GIS for multi- hazard risk assessment.
On Model Validation Techniques Alex Karagrigoriou University of Cyprus "Quality - Theory and Practice”, ORT Braude College of Engineering, Karmiel, May.
1 Flood Hazard Analysis Session 1 Dr. Heiko Apel Risk Analysis Flood Hazard Assessment.
Economic Cooperation Organization Training Course on “Drought and Desertification” Alanya Facilities, Antalya, TURKEY presented by Ertan TURGU from Turkish.
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Monte Carlo Simulation CWR 6536 Stochastic Subsurface Hydrology.
Copyright 2010, The World Bank Group. All Rights Reserved. COVERAGE, FRAMES & GIS, Part 2 Quality assurance for census 1.
Measures of Dispersion CUMULATIVE FREQUENCIES INTER-QUARTILE RANGE RANGE MEAN DEVIATION VARIANCE and STANDARD DEVIATION STATISTICS: DESCRIBING VARIABILITY.
1 ARC SEIBERSDORF RESEARCH INFORMATION TECHNOLOGIES for Safety, Quality and Communications Multiple dependencies and scenario management in.
Advanced Topics in GIS. Natural Hazards Landslide Susceptibility.
Verification in NCEP/HPC Using VSDB-fvs Keith F. Brill November 2007.
Algoval: Evaluation Server Past, Present and Future Simon Lucas Computer Science Dept Essex University 25 January, 2002.
Landslide Hazard Assessment in Central America Dalia Kirschbaum, Code 617, NASA GSFC Figure 2: Landslide hazard assessment and forecasting system that.
Assessing Uncertainty in FVS Projections Using a Bootstrap Resampling Method by Tommy F. Gregg Region 6 NR/FID and Susan Stevens Hummel PNW Research Station.
1 Peter Fox GIS for Science ERTH 4750 (98271) Week 8, Tuesday, March 20, 2012 Analysis and propagation of errors.
AMERICA’S ARMY: THE STRENGTH OF THE NATION Mort Anvari 1 Cost Risk and Uncertainty Analysis MORS Special Meeting | September.
Research Design for Collaborative Computational Approaches and Scientific Workflows Deana Pennington January 8, 2007.
Managing and communicating uncertainty in geospatial web service workflows Richard Jones, Dan Cornford, Lucy Bastin, Matthew Williams Computer Science,
MEGN 537 – Probabilistic Biomechanics Ch.5 – Determining Distributions and Parameters from Observed Data Anthony J Petrella, PhD.
Center for Radiative Shock Hydrodynamics Fall 2011 Review Assessment of predictive capability Derek Bingham 1.
FDOT Transit Office Modeling Initiatives The Transit Office has undertaken a number of initiatives in collaboration with the Systems Planning Office and.
Today: Lab 3 & A3 due Mon Oct 1: Exam I  this room, 12 pm Please, no computers or smartphones Mon Oct 1: No grad seminar Next grad seminar: Wednesday,
1 Inferences About The Pearson Correlation Coefficient.
© Phil Hurvitz, Introduction to Geographic Information Systems and their Potential Uses as Management Tools in Commercial Shellfish Farming Introduction.
Cyberinfrastructure to promote Model - Data Integration Robert Cook, Yaxing Wei, and Suresh S. Vannan Oak Ridge National Laboratory Presented at the Model-Data.
Web Design and Development. World Wide Web  World Wide Web (WWW or W3), collection of globally distributed text and multimedia documents and files 
Methodology for Risk-Based Flood Damage Assessment David R. Maidment CE 394K.2, Spring 1999.
Preparing input for the TOPKAPI (TOPographic Kinematic Approximation and Integration) model PRASANNA DAHAL.
U.S. Department of the Interior U.S. Geological Survey Automatic Generation of Parameter Inputs and Visualization of Model Outputs for AGNPS using GIS.
Data Management Practices for Early Career Scientists: Closing Robert Cook Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, TN.
Downscaling of European land use projections for the ALARM toolkit Joint work between UCL : Nicolas Dendoncker, Mark Rounsevell, Patrick Bogaert BioSS:
Chapter ?? 7 Statistical Issues in Research Planning and Evaluation C H A P T E R.
Titre. Geographic Information System GIS offer powerful tools for adding spatial perspectives to: –Planning –Research –Technology transfer –Impact assessment.
Downloading the MAXENT Software
MEGN 537 – Probabilistic Biomechanics Ch.5 – Determining Distributions and Parameters from Observed Data Anthony J Petrella, PhD.
Statistical Concepts Basic Principles An Overview of Today’s Class What: Inductive inference on characterizing a population Why : How will doing this allow.
Why Is It There? Chapter 6. Review: Dueker’s (1979) Definition “a geographic information system is a special case of information systems where the database.
Exposure Prediction and Measurement Error in Air Pollution and Health Studies Lianne Sheppard Adam A. Szpiro, Sun-Young Kim University of Washington CMAS.
1 Life Cycle Assessment A product-oriented method for sustainability analysis UNEP LCA Training Kit Module k – Uncertainty in LCA.
WAR, POWER-LAWS & MLE Miles D. Townes The George Washington University Draft, links, and STATA do-files available at
Overview Modern chip designs have multiple IP components with different process, voltage, temperature sensitivities Optimizing mix to different customer.
Achievements in Wildland Fire Risk Mapping
Sampling Distribution
Italian National Landslide Warning System
Presentation transcript:

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO 2015 P ROTOTYPE S OFTWARE F OR D ETERMINATION O F L ANDSLIDE S TATISTICS Istituto di Ricerca per la Protezione Idrogelogica, IRPI Consiglio Nazionale delle Ricerche, CNR Mauro Rossi

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO L ANDSLIDE H AZARD Landslide hazard is the probability of occurrence in a specified period and within a given area of a potentially damaging landslide of a given magnitude. The definition incorporates the concepts of location (where?), time (when, or how frequently?) and magnitude (how large?). (Guzzetti et al. 1999, 2005)

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO L ANDSLIDE H AZARD (Guzzetti et al. 1999, 2005) H L = P (M L ) × P (T L ) × P (S L ) Considering the three probability as independent: Probability of landslide size (M L ), a proxy for magnitude Probability of temporal (T L ) occurrence of landslides Probability of spatial (S L ) occurrence of landslides (landslide susceptibility)

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO SW L ANDSLIDE S TATISTICS Prototype software for determination of landslide statistics from inventory maps  Investigation on the variations of the statistics of populations of landslides in different physiographical, climatic and geographical settings, through the exploitation of landslide inventory maps.  Landslide size (area or volume) extracted from inventories and used to establish empirical density distributions.

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO SW L ANDSLIDE S TATISTICS Medium and large areas: power-law (‘fat’ or heavy tail) Medium and large areas: power-law (‘fat’ or heavy tail) Landslide Inventory Gives underlying frequency- area distribution

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO L ANDSLIDE S IZE D ISTRIBUTIONS

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO 2015 Landslide area, A L (m 2 ) Probability density, p(A L ) SW L ANDSLIDE S TATISTICS PDF: P(a L )CDF: P(A L ≤a L ) CDF=1CDF=0.5

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO S OFTWARE S PECIFICATION For the three probability densities the software estimates:  The values of the distribution parameters  The uncertainty of the parameters The software is coded in R (Open Source software environment for statistical computing and graphics The software has a twofold interface with different functionalities

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO S OFTWARE I NTERFACES The software can be used exploiting:  an R script interface (BATCH) requiring a local execution  a Web Processing Service (WPS) accessible using a GIS client BATCH WPS

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO SW L OGICAL S CHEMA The software has three main components devoted to the:  data input preparation (I)  probability density estimation (II)  output generation (III)

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO I NPUT D ATA P REPARATION WPS link accessible at Download of files from

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO P ROBABILITY D ENSITY E STIMATION

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO O UTPUT P REPARATION

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO In the basic version (WPS) for each parameter the tool gives  an estimate of its value: “Estimate”  the standard error “Std. Err.”  the estimated error variance “t_value”  the correlations among the parameters “Pr(>|t|)” B ASIC SW O UTPUT

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO A DVANCED SW O UTPUT (1/3) The advanced version (BATCH) of the SW integrates the following additional features:  the bootstrapped parameter uncertainty estimation, for the statistical comparison of the estimated probability distributions;  the bootstrapped Kolmogorov–Smirnov test (KS test) to serve as a “goodness of fit” test providing a measure of the suitability of the different distribution types,  a different version of the cumulative density function calculation,  an improved use of shapefiles, allowing the automatic landslide size calculation,  an improved output version, allowing the calculation of the probability density.

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO A DVANCED SW O UTPUT (2/3) PERCENTILEALPHABETATROLL 1% % % % % % % For each distribution type (DP, DPS, IG) estimated with different statistical approaches (HDE, KDE, MLE) the advanced version provides uncertainty plots and tables.

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO A DVANCED SW O UTPUT (3/3) DISTRIBUTION BOOTSTRAP SAMPLES KS_DKS_PVALUEKS_PVALUE_BOOT HDE_DPS HDE_DP HDE_IG KDE_DPS KDE_DP KDE_IG MLE_DPS MLE_DP MLE_IG The Kolmogorov-Smirnov test provides a measure of the suitability of the different distribution types. Lowest D and highest p_values identify the most appropriate distribution

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO T EST S ITES Umbria test site  Umbria region  Collazzone area  Ivancich (Assisi)

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO A VAILABLE DATA GEOLOGICAL AND LITHOLOGICAL MAPS, realized by visual interpretation of stereo aerial photographs and field survey acitvity 1:10,000 scale (available in shapefile format). MULTI-TEMPORAL LANDSLIDE INVENTORY MAP realized by interpretation of different set of stereo aerial photographs, 1:10,000 (available in shapefile format). EVENT LANDSLIDE INVENTORY MAPS, realized mainly through field survey acitvity 1:10,000 scale (available in shapefile format). LANDUSE MAP, realized using ortho-photo maps, 1:10,000 scale, update year 2000 (available in shapefile format). DIGITAL ELEVATION MODEL, resolution 10m x 10m, realized by interpolation of digital contour line at 1:10,000 scale, (available in geotiff).

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO C OLLAZZONE STUDY AREA Area about 80 km 2

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO A VAILABLE DATA 1941   1997  1985  1977  1954  Multi-temporal landslide inventory map including shallow and, deep-seated slides. Stereo-aerial photographs taken between 1941 and Event landslide inventory maps in the period between

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO C OLLAZZONE R ESULTS For each inventory in the study area, we estimate the parameter for the three distribution using three different estimation method

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO P OTENTIAL A PPLICATIONS The software for determination of landslide statistics is suitable for:  Landslide inventory comparison and evaluation  Estimate of landslide magnitude  Landslide hazard assessment  Hazard scenario analysis

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO 2015 LAMPRE W EBSITE D5.3 Code of the “Prototype SW for landslide statistics” Report/UserGuide of the “Prototype SW for landslide statistics”

COSTARICA EVENTO DE DISEMINACIÓN Y CAPACITACIÓN | ENERO SW T RAINING Software training  Configuration  Running Post LAMPRE support through:  direct communications  short visits  mail exchange  web conferences  web seminar