Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Schematic optical layout of the instrument. Color box legend: Upright optical tweezers.

Slides:



Advertisements
Similar presentations
Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. (a) UV–Vis extinction spectrum of citrate capped AgNPs. Inset shows transmission.
Advertisements

Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of experimental setup. During the measurement, a frog or salamander.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of the setup: (a) the multiphoton laser path and (b) the laser path.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Confocal to multiphoton conversion. (a) Schematic of system adaptation. The near.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representation of the benchtop microsurgery microscope system for combined.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Raman tweezer configurations; (a) single-beam backscatter and (b) dual-beam forward.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the adaptive harmonic generation microscope. Lx, lens; Mx, mirror;
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Bubble radius (in radial and axial direction) over time for single laser pulses.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Optical configuration. The function of a BFP imaging lens, added externally to.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) The schematic diagram and (b) the photograph of the graphene saturable absorber.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical image of fore and hind wings from a male S. charonda butterfly at different.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Vision of the Brillouin lidar operated from a helicopter. The center ray represents.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Lens L focuses 488 or 514nm of light from an argon-ion laser at the BFP of a 1.45.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of intravital imaging system based on a custom-built video-rate laser.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of the proposed method based on heterodyne mixing, laser diode.
Date of download: 6/17/2016 Copyright © 2016 SPIE. All rights reserved. Standard pump-probe saturation spectroscopy with electronic feedback to the laser.
Date of download: 6/20/2016 Copyright © 2016 SPIE. All rights reserved. DyCE Imaging System. System configuration for dynamic ICG imaging. Figure Legend:
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. Combined two-photon and electrophysiological recording of human neocortical neuronal.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Prismless confocal total internal reflection (CTIR) microscope. 532-nm light is.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. (a) Diagram showing the position of the microelectrode in relation to the position.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup. Figure Legend: From: Modeling of a diode-pumped.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical setup of the experiment. L1: the fs laser at 1554nm. L2: the laser.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Expression of channelrhodopsin-2 (ChR2) in layer 5 pyramidal neurons in the barrel.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Lensfree imaging module. (a) Schematic illustrating the principle of lensfree image.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Temporal profiles of a laser pulse at 1064, 532, and 355nm measured with a 1-ns.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of a photoporation system using a 405-nm diode laser: L (L1=50mm.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup. (1) Nd:YVO4 laser. (2) Beam expander. (3)
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. Absorptive transillumination imaging of intramyocardial scroll waves: (a) schematic.
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. Optogenetic tools and light tissue penetration: (a) schematic representation of.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Subdivision of the retina in two treatment zones. The treated zones, I and II, are.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of experimental setup used for generation of collimated hollow beam.
Date of download: 7/3/2016 Copyright © 2016 SPIE. All rights reserved. Calcium sparks and puffs detected in pyramidal cell dendrites. (a) Image shows a.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. Optical setup and schematic description of the acquisition. (a) Optical setup inside.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Through-the-objective TIRF creates the evanescent field on the aqueous side of the.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the optical-resolution photoacoustic microscope. (b) Photograph.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup: APD, avalanche photodiode; BS, beamsplitter;
Date of download: 7/11/2016 Copyright © 2016 SPIE. All rights reserved. (a) Representative cytology images and corresponding OPL maps of a cytologically.
Date of download: 7/14/2016 Copyright © 2016 SPIE. All rights reserved. Energy level diagram of a Λ-type atomic system. For Rb87, ∣ 1→F′=2, ∣ 2→F′=1, ∣
Date of download: 9/16/2016 Copyright © 2016 SPIE. All rights reserved. The interrogation scheme used and spectral response of the sensing elements as.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Dissociated spinal neurons express cameleon in culture. (a) Side view of the posterior.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Layout of the KECK 3D fusion multimodal microscope. Only modalities and functions.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Experimental design. Experimental setup showing laser beam delivery and dual imaging.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Volume 108, Issue 3, Pages (February 2015)
Volume 107, Issue 4, Pages (August 2014)
Volume 106, Issue 10, Pages (May 2014)
Volume 105, Issue 3, Pages (August 2013)
Bassam V. Atallah, Massimo Scanziani  Neuron 
Magnetic Stimulation of One-Dimensional Neuronal Cultures
Sapun H. Parekh, Young Jong Lee, Khaled A. Aamer, Marcus T. Cicerone 
Threshold Behavior in the Initiation of Hippocampal Population Bursts
Regulation of Airway Ciliary Activity by Ca2+: Simultaneous Measurement of Beat Frequency and Intracellular Ca2+  Alison B. Lansley, Michael J. Sanderson 
Nicholas W. Roberts, Michael G. Needham  Biophysical Journal 
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Volume 107, Issue 6, Pages (September 2014)
Walking Modulates Speed Sensitivity in Drosophila Motion Vision
Volume 60, Issue 4, Pages (November 2008)
Non-overlapping Neural Networks in Hydra vulgaris
Volume 98, Issue 6, Pages (March 2010)
Neural Circuit Components of the Drosophila OFF Motion Vision Pathway
Volume 104, Issue 1, Pages (January 2013)
Volume 105, Issue 10, Pages (November 2013)
Felix Kohler, Alexander Rohrbach  Biophysical Journal 
Imaging the Activity and Localization of Single Voltage-Gated Ca2+ Channels by Total Internal Reflection Fluorescence Microscopy  Angelo Demuro, Ian Parker 
Volume 105, Issue 10, Pages (November 2013)
Volume 114, Issue 6, Pages (March 2018)
Ashley R. Carter, Yeonee Seol, Thomas T. Perkins  Biophysical Journal 
One-photon characterization of RVF5 in neurons.
Presentation transcript:

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Schematic optical layout of the instrument. Color box legend: Upright optical tweezers (red), a laser microdissector (violet), and a back-focal plane interferometer (brown) are operated on an Olympus BX51 microscope (green). AOM: acousto-optic modulator; BS 50/50 : beam splitter 50/50%; CCD: charged coupled device camera; DM: dichroic mirror; F: filter; λ/2: half-wave plate; L: lens; MEA: microelectrode array amplifier; ND: neutral density filter; PBS: polarizing beam splitter; PD: photodiode; QPD: quadrant photodiode. Figure Legend: From: Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks J. Biomed. Opt. 2011;16(5): doi: /

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Laser dissection of a single neurite and measurements of the released tension. (a) Bright field images of a differentiating rat hippocampal neuron (7 DIV). The violet arrow indicates the dissection site on the neurite (Video 1). Frame rate was 7 Hz. The numbers indicate seconds. Bar: 10 μm. The pulse repetition of the UV laser was 100 Hz. A bead (Ø 4 μm) coated with fibronectin was trapped and positioned on the neurite to adhere to integrins in the plasma membrane. The power of the IR laser at the sample was 40 mW. Objective: 60×, NA 0.9 (Olympus). The trapping stiffness was calibrated by the power spectra method: k x,y = 80 pN/μm, k z = 13 pN/μm. (b) Fluo-4 AM fluorescence of the neuron in (a). Average power at the sample of the 488 nm laser diode was 50 μW. Repetition rate of the laser diode was 5 Hz with a duty cycle of 4%. Frame acquisition rate was 5 Hz. Numbers indicate seconds. Bar: 12 μm (Video 2). The red ROI in the last frame indicates the region for quantifying the (F-F 0 )/ F 0 fluctuations in color-coded fluorescence intensity (F 0 was the intensity value in the first frame of the video). (c) Time course of the energy delivered by the UV laser to the sample. (d) Displacement of and force on the trapped bead versus time. Green and blue traces are the x, y components; the red trace is the z component. Sampling rate was 10 kHz. Figure Legend: From: Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks J. Biomed. Opt. 2011;16(5): doi: /

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Laser dissection of single neurons in neural networks. (a) Complete neurite dissection and regeneration of a hippocampal neuron (rat, 4 DIV). The white arrow indicates the dissection site. The numbers indicate minutes. The pulse repetition of the UV laser was 100 Hz, the average power at the sample about 7 μW. The black arrows in the last two frames illustrate the orientation of the exploratory motion of the regenerating growth cone after dissection. Bars: 12 μm (Video 3). (b) Partial dissection and regeneration of a hippocampal neuron (rat, 3 DIV). The white arrow indicates the dissection site. Numbers indicate minutes. The pulse repetition rate of the UV laser was 100 Hz, the average power at the sample 3 μW. As seen in the last frame, the neurite appears completely recovered after 20 min. Bar: 25 m (Video 4). Figure Legend: From: Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks J. Biomed. Opt. 2011;16(5): doi: /

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Laser dissection of individual connections in a neural network on a MEA. (a) Electrode layout of the MEA chip: 6×10 matrix of electrodes with a diameter of 30 μm and an electrode spacing of 500 μm ( = black bar). The strongly correlated activity on electrodes 41 and 27 was used for the analysis shown in Fig.. (b) Mosaic of two bright field images of the neural network around one electrode (#27) of such 60-electrodes MEA. White lines indicate the dissected connections and numbers the dissection sequence. (c) Mosaic of five fluorescence images of the network in (b) loaded with Fluo-4 AM. Circles and numbers indicate cells and approximate areas from which calcium fluctuations were quantified. Figure Legend: From: Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks J. Biomed. Opt. 2011;16(5): doi: /

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Spontaneous activity of a neural network recorded simultaneously by MEA electrodes and calcium fluorescence imaging during subsequent ablation of neuronal connections. The recording of network activity was divided into eight experimental sessions (S1÷S8) each lasting 625 s; four of them are depicted. Color-coded calcium fluctuations from the seven cells shown in Fig. were temporally aligned with extracellularly recorded electrical activity from electrodes 41 and 27. Calcium fluctuations were quantified as (F- F 0 )/F 0, with F 0 equal to the minimum intensity measured in each video session, to obtain fluctuation values above zero. Moreover, intensities of individual cells were normalized to their maximum intensity during an experimental session to obtain the same color legend for all experimental sessions. Dissection events during the experimental sessions are marked by vertical red lines; numbers correspond to those in Fig.. The inset displays the change in the total number of recorded spikes from electrodes 27 and 41 during each session. Figure Legend: From: Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks J. Biomed. Opt. 2011;16(5): doi: /