Khadije Khalili 1, Hossein Movla 2, Hamed Azari Najafabadi 1 1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz,

Slides:



Advertisements
Similar presentations
Nanoscale Photovoltaics
Advertisements

Making Solar Cells D. Venkataraman (DV) Department of Chemistry Umass Amherst June 29, 2010.
T HIN FILM SOLAR CELLS Presented by Yao Sun. F UTURE ENERGY SOURCE Clean energy Most reasonable price for the future Available anywhere in the world 1.52*10^21.
LECTURE- 5 CONTENTS  PHOTOCONDUCTING MATERIALS  CONSTRUCTION OF PHOTOCONDUCTING MATERIALS  APPLICATIONS OF PHOTOCONDUCTING MATERIALS.
P3HT:PCBM Possible way to home-use solar cell “foliage” Ge, Weihao.
Raspberry Solar Cells Ben Taylor Interdisciplinary Education Group University of Wisconsin-Madison.
Juan Bisquert Nanostructured Energy Devices: Equilibrium Concepts and Kinetics CRC Press 1 1Introduction 2Electrostatic and thermodynamic potentials of.
CH. 3 Solar Cell Basic III: Principle Organic Materials for Electronics and Photonics II.
Nano organic solar cells Nagwa I. Ibrahim Zulfi College of education Majmaah University Abstract Organic solar cells are usually manufactured from conjugated.
Excitonic solar cells: New Approaches to Photovoltaic Solar Energy Conversion Alison Walker Department of Physics University of Bath, UK Modelling Electroactive.
Wei E.I. Sha, Wallace C.H. Choy, and Weng Cho Chew
Report Speaker: C.A. Chen Teacher: G.S Liou Class: Special Topics on Polymers Synthesis.
Substantially Conductive Polymers Part 02. Usually, soliton is served as the charge carrier for a degenerated conducting polymer (e.g. PA) whereas.
Cell and module construction. Photovoltaic effect and basic solar cell parameters To obtain a potential difference that may be used as a source of electrical.
PHOTOVOLTAICS Direct Conversion of Sunlight to Electricity David T Britton, NanoSciences Innovation Centre University of Cape Town Photovoltaic effect.
Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis R. Häusermann,1,a E. Knapp,1.
1 Air Force Research Laboratory Dr. Michael F. Durstock, , Device Architectures.. Aluminum ITO Glass V Electron.
Increasing life span of polymer solar cell. Nagilthes Muthu Chem 4101 Fall 2011.
Solar Cells: Energy for the Future
Nanostructured Polymer Solar Cells
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter I Introduction June 20, 2015June 20, 2015June 20, 2015.
Fei Yu and Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati.
Organic Semiconductors: Electronic Properties and Optoelectronic Applications Hsiang-Han Tseng.
Electrochemistry for Engineers LECTURE 11 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.
Why Use Solar Cells? Low maintenance, long lasting sources of energy Provides cost-effective power supplies for people remote from the main electricity.
C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.
Photovoltaics: What material is best for your needs Benjamin Glassy Mark Ziffer 6/6/2013.
Solar Cell Technology (Si)
Characterization of organic bulk heterojunction and silicon nanowire solar cells Katherine Song Department of Electrical Engineering, Princeton University,
© Imperial College London 1 Photovoltaics: Research at Imperial College Jenny Nelson Department of Physics Imperial College London Grantham Climate Change.
Vikrant Sista Roll No: EE10S012 IR and UV solar cells for windows and energy scavenging applications.
Current through electronic device. Dynamics of electronic carriers J = nev d = ne 2 F  /m* J =  F (lei de Ohm)  = ne 2  /m* = ne  v d =  F  =
Solar Cells 3 generations of solar cells:
1 Solar Cell Fundamentals SJSU Short Course D. W. Parent.
Supervisors: Dr. Ghazi Dr. Izadifard
Done by: Laila Yousef Doaa Herzallah Ibtesam Khalaf Fatmah Mohamed Represented to : Rehab Ceramic materials for.
Nathan Duderstadt, Chemical Engineering, University of Cincinnati Stoney Sutton, Electrical Engineering, University of Cincinnati Kate Yoshino, Engineering.
Powered Paint: Nanotech Solar Ink Brian A. Korgel Department of Chemical Engineering, Texas Materials Institute, Center for Nano- and Molecular Science.
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
THE OPTIMUM PERFORMANCE OF POLYMER SOLAR CELLS By, N. Ibrahim2 M. O. Sid-Ahmed1 1 Sudan University of Science and Technology, Faculty of Science, Physics.
Alternative Energy Sources Organic Photovoltaic (OPV) Timothy McLeod Summer 2006.
Ch.4: Polymer Solar Cells: Photoinduced Charge Transfer ▪ Photoinduced Electron Transfer between Conjugated Polymer and Fullerene N. S. Sariciftci & A.
Dye Sensitised Solar Cells
CEAS REU Project 4 Synthesis of Solar Cell Materials, and Fabrication of Novel Polymer-Based Solar Cells Nathan Duderstadt, Chemical Engineering, University.
Fullerene Derivatives Kirsten Parratt, Loo Lab, 11/9/2010
Yibin Xu National Institute for Materials Science, Japan Thermal Conductivity of Amorphous Si and Ge Thin Films.
Plasmonic Effects in Organic Solar Cells Wei E.I. Sha, Wallace C.H. Choy, Weng Cho Chew Department of Electrical and Electronic Engineering The University.
Reporter: Ting Lei Supervisor: Prof. Jian Pei Organic Solar Cells 2009/10/23 Mechanism and Design Strategies.
Fabrication and characterisation of high efficiency carbon nanotube based organic solar cells Lesias M Kotane NECSA-Wits workshop on Radiation, Material.
Figure Molecular structures of several conjugated polymers. (From Ref. 1 by permission of American Physical Society.)
Organic Photovoltaic Cell
DiffusjonDrift - + Diffusjon Drift. Solid State Electronic Devices, 7e, Global Edition Ben G. Streetman | Sanjay Kumar Banerjee Copyright © Pearson Education.
Photovoltaic effect and cell principles. 1. Light absorption in materials and excess carrier generation Photon energy h = hc/ (h is the Planck constant)
OLEDs Theory & Fabrication
Presented by:- Nayanee Singh B.Tech(E.C.), 5 th sem Roll no: Banasthali University Rajasthan.
Photonic structuring and transport for bulk heterojuction polymer solar cells Rene Lopez Department of Physics and Astronomy University of North Carolina.
NANO SCIENCE IN SOLAR ENERGY
A bottom-up rationale for OPV architecture Fabrication Performance Challenges Research opportunities Research Methods in PV: Organic photovoltaic devices.
Hadi Maghsoudi 27 February 2015
Our Energy Challenge Billion people Billion people Can Nuclear Power Provide Energy for the Future? The answer is no! Number of nuclear.
Solar cell technology ‘ We are on the cusp of a new era of Energy Independence ‘
Date of download: 7/3/2016 Copyright © 2016 SPIE. All rights reserved. J/V characteristics under simulated 1.5 AM, 100 mW/cm2 illumination of a fresh solar.
Materials Science and Engineering
Hadi Maghsoudi 27 February 2015
Optoelectronic Devices
Module 1/7: Solar Technology Basics
QUANTUM DOTS SOLAR CELL
بسم الله الرحمن الرحیم.
TFT – Thin Film Transsistor BIPV – Built In PV.
Presentation transcript:

Khadije Khalili 1, Hossein Movla 2, Hamed Azari Najafabadi 1 1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran 2 Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran RIAPA

☼ A short history of solar cells ☼ Polymer Solar Cell ☺ Principle and device configuration ☼ Organic Solar Cell Materials ☼ The objectives of our work ☺ Electric characteristics ☺ Results ☼ References 9/15/2011NSSC902 Contents

9/15/2011NSSC903 A short history of solar cells  First Generation - Single crystal silicon wafers (c-Si)  Second Generation - Amorphous silicon (a-Si) - Polycrystalline silicon (poly-Si) - Cadmium telluride (CdTe) - Copper indium gallium diselenide (CIGS) alloy  Third Generation - Nanocrystal solar cells - Photoelectrochemical (PEC) cells Gräetzel cells - Polymer solar cells - Dye sensitized solar cell (DSSC)  Fourth Generation - Hybrid - inorganic crystals within a polymer matrix

9/15/2011NSSC904 Polymer Solar Cell Principle and device configuration:  A Absorption of light  E Exciton dissociation  D Double-layer device  B Bulk-heterojunction (BHJ)  Charge transportation  Li Gui, LU GuangHao, et al. Progress in polymer solar cell, Chinese Science Bulletin (2007)

9/15/2011NSSC905 Organic Solar Cell Materials Most important Semiconducting polymers as 1- electron donor polymers: (MEH-PPV), (MDMOPPV), poly(3-hexeylthiophene) (P3HT), (PFO- DBT), (PCDTBT), regioregular poly(3-hexeylthiophene) (RR- P3HT) 2- hole acceptor materials: fullerene (C60) 6,6-phenyl C61 -butyric acid methyl ester (PC61BM), 6,6-phenyl C71-butyric acid methyl ester (PC71BM) and photovoltaic devices are fabricated on cleaned glass substrates with a patterned ITO layer. Other common materials are consist of the conducting polymer poly-wethylene dioxy thiophenex:poly-wstyrene sulfonatex (PEDOT:PSS), the active layer (P3HT:PCBM), and aluminum electrodes are thermally evaporated.

9/15/2011NSSC906 The objectives of our work are:  A. B. Walker, S. J. Martin, A. Kambili, J.Phys.: Condense. Matter 14, 9825(2002)

9/15/2011NSSC907 Electric characteristics:

9/15/2011NSSC908

9/15/2011NSSC909 Fig 1. Variation in the band edge of the semiconductor in terms of the active region distance in thermal equilibrium for different donor like (n-type) dopings. 100 nm 200 nm

9/15/2011NSSC9010 Fig 2. Variation of electron mobility versus cell voltage.

9/15/2011NSSC9011 Fig 3. The injected electron profile in a semiconductor with cathode on the right hand side and anode on the left hand side. In the case of V=0 is thermal equilibrium. 100 nm 200 nm

9/15/2011NSSC9012 Fig 4. Diffusion and drift currents at 300 K in the double Schottky barrier device at 0.5 V. Diffusion current is larger than the drift current and the two currents flow in the opposite directions. 100 nm 200 nm

9/15/2011NSSC9013 Fig 5. Calculated l J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities. 100 nm 200 nm 40 mw/cm 2 60 mw/cm 2 80 mw/cm 2 40 mw/cm 2 60 mw/cm 2 80 mw/cm 2

9/15/2011NSSC9014 Fig 7. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities. The dashed blue line is the Lampert et.al. calculated dark current. 40 mw/cm 2 60 mw/cm 2 80 mw/cm 2

9/15/2011NSSC9015 Fig 8. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell for different thickness.

References 9/15/2011NSSC9016 [1] V. D. Mihailetchi, Device Physics of Organic Bulk Heterojunction Solar Cells, MSc Ph.D.-thesis series ,ISSN [2] H. Hoppe, N.S.Sariciftci, J. Mater. Res. 19, (2004) [3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and f.wudl, Science 258 (1992) [4] G. Yu, J. Gao,J. C. Hummelen,F. Wudl, and A. J. Heeger, Science 270 (1995) [5] P. W. M Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19 (2007) [6] S. S. Pandy, W. Takashima, S. Nagamatsu, T. Endo, M. Rikukawa, K. Kaneto, Jpn. J. Appl. Phys. 39 (2000) 94. [7] Z. Bao, A. Dodabalapour, A. Lovinger, Appl. Phys. Lett. 69 (1996) [8] H. Sirringhaus, N. Tessler and R. H. Friend, Science 280 (1998) [9] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller and M. Chhowalla, Appl. Phys. Lett. 87 (2005) [10] Q. H. Xu, D. Moses, A. J. Heeger, Phy. Rev. B 67 (2003) [11] C. J. Brabec,G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, N. S. Sariciftci, Chem. Phys. Lett. 340 (2001) 232

9/15/2011NSSC9017 [12] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos, Adv.Funct.Mater. 13 (2003) 73 [13] J.Y.Kim, K.Lee, N.E.Coates, D.Moses, T.Nguyen,M.Dante,A.J.Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317(2007) 222. [14] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Func. Mater. 11 (2001) 15. [15] H. Hoppe, N. Arnold, D. Meisner and N. S. Saricirtci: Modeling the optical absorption whit in conjugated polymer/fullerene-based bulk heterojunction organic solar cells, Sol. Energy Mater. Sol. Cells. 80, 105 (2003) [16] P. Kumar, S. C. Jain, V. Kumar, S. Chand, R. P. Tandon, J. Appl. Phys. 105, (2009). [17] A. B. Walker, S. J. Martin, and A. Kambili, J. Phys.: Condens. Matter 14, 9825 (2002). [18] S. J. Martin, Alison B. Walker, A. J. Campbell and D. D. C. Bradley, J. Appl. Phys. 98, (2005). [19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003).

9/15/2011NSSC9018