The SKILLS exam Learning Objectives

Slides:



Advertisements
Similar presentations
Dot Plots & Box Plots Analyze Data.
Advertisements

Unit 16: Statistics Sections 16AB Central Tendency/Measures of Spread.
Unit 1.1 Investigating Data 1. Frequency and Histograms CCSS: S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box.
Controlled assessment High level presentation made easy!
Measures of Dispersion
The controlled assessment is worth 25% of the GCSE The project has three stages; 1. Planning 2. Collecting, processing and representing data 3. Interpreting.
What skills do you need for GEOG 2? As well as knowing all about population, rivers and flooding you also need to make sure you brush up on these skills…
B a c kn e x t h o m e Parameters and Statistics statistic A statistic is a descriptive measure computed from a sample of data. parameter A parameter is.
Statistical Analysis SC504/HS927 Spring Term 2008 Week 17 (25th January 2008): Analysing data.
B a c kn e x t h o m e Classification of Variables Discrete Numerical Variable A variable that produces a response that comes from a counting process.
Business Math, Eighth Edition Cleaves/Hobbs © 2009 Pearson Education, Inc. Upper Saddle River, NJ All Rights Reserved 7.1 Measures of Central Tendency.
 In this part you write about the fieldwork question and the geographic context it is in.  Focus on one or two hypotheses or aims.  Make sure these.
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
Measures of Central Tendency
 Percentage Bar graphs are similar ways to pie graphs. They are used to show different amounts of related data.  They are construct using a single bar.
Describing distributions with numbers
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
1 Business Math Chapter 7: Business Statistics. Cleaves/Hobbs: Business Math, 7e Copyright 2005 by Pearson Education, Inc. Upper Saddle River, NJ
May 06th, Chapter - 7 INFORMATION PRESENTATION 7.1 Statistical analysis 7.2 Presentation of data 7.3 Averages 7.4 Index numbers 7.5 Dispersion from.
Census A survey to collect data on the entire population.   Data The facts and figures collected, analyzed, and summarized for presentation and.
The SKILLS exam Learning Objectives
Chapter 3: Central Tendency. Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately.
Graphical Summary of Data Distribution Statistical View Point Histograms Skewness Kurtosis Other Descriptive Summary Measures Source:
Chapter 3 Averages and Variations
Data Handbook Chapter 4 & 5. Data A series of readings that represents a natural population parameter A series of readings that represents a natural population.
Quantitative Skills 1: Graphing
PPA 501 – Analytical Methods in Administration Lecture 5a - Counting and Charting Responses.
Nature of Science Science Nature of Science Scientific methods Formulation of a hypothesis Formulation of a hypothesis Survey literature/Archives.
Trying an Experiment BATs Conduct a memory experiment with real participants in a professional and ethical way Collect data Have you got all your materials.
30 marks 25% of final grade.  Is an outline of what this work is about.  Why are you doing this?  What is it you are going to do? (Hypothesis/Aims)
Table of Contents 1. Standard Deviation
1 PUAF 610 TA Session 2. 2 Today Class Review- summary statistics STATA Introduction Reminder: HW this week.
Chapter 2 Describing Data.
© 2006 McGraw-Hill Higher Education. All rights reserved. Numbers Numbers mean different things in different situations. Consider three answers that appear.
MATH IN THE FORM OF STATISTICS IS VERY COMMON IN AP BIOLOGY YOU WILL NEED TO BE ABLE TO CALCULATE USING THE FORMULA OR INTERPRET THE MEANING OF THE RESULTS.
By: Amani Albraikan 1. 2  Synonym for variability  Often called “spread” or “scatter”  Indicator of consistency among a data set  Indicates how close.
HISTORY/GEOGRAPHY/CIVICS A 2 hour (+10mins) combined paper Geography Geography Requires you to use 1 hour of the 2 hours available as working time for.
INVESTIGATION 1.
Unit 2: Geographical Skills
Summary Statistics and Mean Absolute Deviation MM1D3a. Compare summary statistics (mean, median, quartiles, and interquartile range) from one sample data.
Progression in fieldwork skills and their assessment at A2 Unit 4A.
Unit 3: Averages and Variations Week 6 Ms. Sanchez.
LIS 570 Summarising and presenting data - Univariate analysis.
Math 310 Section 8.1 & 8.2 Statistics. Centers and Spread A goal in statistics is to determine how data is centered and spread. There are many different.
Chapter 2 Describing and Presenting a Distribution of Scores.
Descriptive Statistics(Summary and Variability measures)
Describing Data Week 1 The W’s (Where do the Numbers come from?) Who: Who was measured? By Whom: Who did the measuring What: What was measured? Where:
AS GEOG2 SECTION A Self-quizzing: I have included questions in this presentation, followed by mark scheme from AQA. Some answers are on the following slide.
©2013, The McGraw-Hill Companies, Inc. All Rights Reserved Chapter 2 Describing and Presenting a Distribution of Scores.
Central Tendency  Key Learnings: Statistics is a branch of mathematics that involves collecting, organizing, interpreting, and making predictions from.
Skills Checklist.
Descriptive Statistics
Exploratory Data Analysis
Data Summarization.
Mathematical Presentation of Data Measures of Dispersion
Applied Fieldwork Enquiry
Description of Data (Summary and Variability measures)
The SKILLS exam Learning Objectives
Percentiles and Box-and- Whisker Plots
Dot Plots & Box Plots Analyze Data.
Dot Plots & Box Plots Analyze Data.
Describing Quantitative Data with Numbers
Geography Fieldwork Skills
Understanding Standards Geography Advanced Higher
GCSE Geography – General Skills
Understanding Standards Geography Advanced Higher
Descriptive Statistics
USING STATISTICS TO DESCRIBE GEOGRAPHICAL DATA
Presentation transcript:

The SKILLS exam Learning Objectives Understand what is required for the skills exam Review and practise some of these skills.

On TUESDAY morning at 10.45am, 24th MAY 2011, you will have to sit the following exam: 1 hour 50 marks Worth 30% of AS (and 15% of A level) 2 sections Answer ALL questions on the paper YOU WILL NEED Calculator Protractor Pair of compasses Pencil Rubber Ruler Pencil sharpener Black pen

QUESTION 1 ½ hour; 25 marks Geographical skills questions based on either RIVERS or POPULATION You will need some knowledge of BOTH core topics but designed to test skills over knowledge e.g. can you draw a graph from a table of data?

QUESTION 2 ½ hour; 25 marks Geographical skills questions based on FIELDWORK You will need to describe and explain what you did on your river field trip and how you analysed the data afterwards.

Basic Skills Investigative Skills Cartographic Skills Graphical Skills There are many different skills you need to be able to do: Basic Skills Investigative Skills Cartographic Skills Graphical Skills ICT Skills Statistical Skills

You will not be expected to name any of these skills These are some of the skills we have already covered at least once in class: You will also have covered many of these skills in GCSE Maths and Geography Annotating diagrams, sketches, photos, graphs etc Overlays Literacy and numeracy skills Risk assessing Data presentation Atlases Field sketches OS maps (incl. isolines) Maps with located proportional symbols Flow line maps Choropleth maps Line, bar and scatter graphs Pie charts Triangular graphs Radial diagrams Logarithmic scales Use of databases Use of GIS Presentation using ICT Mean, mode median Interquartile range Standard deviation Spearmans’ rank You will not be expected to name any of these skills You will be expected to interpret/complete graphs/maps/diagrams etc and to perform simple calculations Understanding command words is essential; for example, a common pitfall is explaining when the question asks for description.

Basic Skills Literacy (using good English and geographical language) Annotations (labels that describe and explain; they may be on sketches, diagrams, maps, photos etc) Using overlays

Investigative Skills Identifying aims and geographical questions Collecting data (using appropriate sampling techniques from both primary and secondary sources) Analysing, presenting and interpreting data Drawing conclusions (and showing awareness of their validity) Evaluating your research Risk assessment

Cartographic Skills Atlases Degrees and Minutes 51°30’ 51°00’ 50°30’ 50°00’ 02°30’ 02°00’ 01°30’ 01°00’

Cartographic Skills Atlases, base maps, sketch maps, OS maps (you need to be able to find and give grid references, sketch areas from atlas maps, identify the shape of the land using contours, measure distances, describe patterns etc. Maps with located proportional symbols (these could include squares, circles, semi-circles or bars) Maps showing movement (flow lines, desire lines and trip lines) Choropleth, Isoline and Dot maps

Graphical Skills Line graphs (simple, comparative, compound and divergent) Bar graphs (simple, comparative, compound and divergent) Scatter graphs (and use of best fit line) Pie charts & Proportional divided circles Triangular graphs Radial diagrams Logarithmic scales Dispersion diagrams

ICT Skills Remotely sensed data (photos and images captured by satellite) Databases (e.g. national statistics website, environment agency website, meteorological office data) GIS (e.g. google earth/maps, mapzone) Presentation using ICT (producing text, maps, images, graphs etc on the computer)

Statistical Skills Measures of Central tendency (Mean, Mode, Median) Measures of Dispersion (Range, Interquartile Range, Standard Deviation) Statistical Tests (Spearman's Rank)

Skills practice Triangular Graph This lesson we are going to go over some skills that we haven’t done before/only covered briefly...... Triangular Graph Percentage of electricity produced by generating source for selected countries Thermal and other (%) Nuclear (%) For example France is: Nuclear: Hydroelectric: Thermal and other: Hydroelectric (%)

Isoline Maps Isoline maps represent data by connecting a series of points into lines. You will have already used one type of isoline map many times… do you know what it is? Here is another example of an isoline map. - What does it show?

What can you conclude from this map? Plot a place that has 23°C. What can you conclude from this map? Isolines = Isotherms

Dot maps What is a dot map? A map that shows the spatial distribution of a variable as a number of equal sized dots. What is a benefit and a limitation of dot maps? Good for quick impression of distribution BUT... Large number of dots are difficult to count for precise number. GIS dot map to show population in Brazil, using 1 dot to represent 100,000 people

Simple Comparative Compound Divergent Graph Type AQA Simple Comparative Compound Divergent Also Called: Bar Charts Multiple bar charts Clustered Divided Bar Charts Composite Population Pyramids Bi-Polar graphs Watch out for One axis has values, the other categories Can be located Keep simple, Up to four categories – more than 5 use separate graph [3 = triangular?] Often adds up to 100% but can be proportional. Largest value at the top of the stack, no more than 5 divisions] May be either actual values or percentages. Two sets of data Looks Like Bar chart

Proportional divided circles Pie charts and Proportional divided circles Can you draw a pie chart? Try drawing a pie chart to show the sources of pollution incidents in English and Welsh rivers in 1996. Pollutant Number of Incidents Sewage 15 Industry 10 Agriculture 6 Transport 4 Others http://www.youtube.com/watch?v=W60F_517PVY&feature=related TOTAL = 50 so Sewage = 15/50 x 360 = 108°

√ Pie charts and Proportional divided circles r = (v/π) These are the same pie charts but drawn in relation to the size of the dataset. Ethnicity Isle of Wight Portsmouth White 130982 176882 Mixed Race 719 1859 Asian 432 4555 Black 304 942 Chinese or Other 294 2463 Total 132 731 186 701 http://www.youtube.com/watch?v=W60F_517PVY&feature=related The size of the pie chart for the Isle of Wight therefore would be smaller than that of Portsmouth. This is calculated using the formula: V = total number to be represented r = radius of circle √ r = (v/π) So IOW proportional circle radius is: 132731 /

What type of graph is this? Located proportional divided circles

Finding the ‘central tendency’ Mean, Mode and Median – Finding the ‘central tendency’ Mean – Add up all the values and divide by number in the data set Mode – This is the value that occurs most frequently in a data set Median – This is the middle value of a data set when all figures are arranged in rank order. (the mean of the middle two values if an even number in data set) Problems with the central tendency calculations: They all give different results, which do you believe? None give a reliable picture of the distribution of the data set So you need to give the dispersion of the data instead...

Measures of Dispersion Range – Difference between the highest and lowest values in the data set Inter-quartile range - Rank the data in order of size and divide it into four equal sized groups (quartiles). The upper quartile is between the 1st and 2nd quartile and the lower quartile is between the 3rd and 4th quartile. The difference between the upper and lower quartile is the inter-quartile range. The IQR indicates the spread of the middle 50% of data around the MEDIAN value and so is a better indicator of the degree to which the data is spread/dispersed either side of the middle value. Standard Deviation – Measures the degree of dispersion about the MEAN value of the data set. SD A low SD shows data is clustered around mean and dispersion is narrow. A high SD shows data is widely spread around mean and dispersion is large.

Practice Questions for central tendency and dispersion Mean- Value Mean- Value MEAN Add all values up and divide by number of variables 693.67 664.07

Practice Questions Dispersion Diagram 1,200 Annual rainfall (mm) Mean- Value Mean- Value Dispersion Diagram You can check to see if its right on p.327 of textbook – think is the same data just one yr less 693.67 664.07 Southeast England North Nigeria

Practice Questions Range = highest - lowest 693.67 664.07 Highest value Range = highest - lowest Mean- Value Mean- Value Lowest value 693.67 664.07

Practice Questions Median 693.67 644.07 Highest value Upper quartile Mean- Value Mean- Value Median Lower quartile Lowest value 693.67 644.07 Northern Nigeria: Inter-quartile range (IQR) = 850 – 380 =

This measures the degree of dispersion around the mean. Practice Questions Mean- Value Mean- Value Standard Deviation This measures the degree of dispersion around the mean. The SD for the SE of England is low so ... Variance = total of square roots/number of values in data set SD = Square root of variance -130.33 16985.91 288.07 82984 9.07 82.3 163.67 26787.87 The SD for N Nigeria is high so ... -129.33 16726.25 -341.93 116.92 1605498 216308 693.67 644.07 107033 14420 Variance = Total divided by number in data set 120 327 Standard deviation is the square root of the variance.