GRK-1203 Workshop Oelde Watching a laser pulse at work

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Relativistic Surface High Harmonic Generation
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
High-order Harmonic Generation (HHG) in gases by Benoît MAHIEU 1.
Components of ultrafast laser system
kHz-driven high-harmonic generation from overdense plasmas
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied.
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
M. S. Tillack, Y. Tao, F. Najmabadi Proposed contributions to Jupiter-III by the laser-matter interactions group Briefing to Prof. Yoshio Ueda 20 November.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
TOF Mass Spectrometer &
Ultrafast Dynamics in Solid Plasmas Using Solid Plasmas Using Doppler Spectrometry and Giant magnetic Pulses Ultrafast Dynamics in Solid Plasmas Using.
Laser driven particle acceleration
Experimental study of strong shocks driven by compact pulsed power J. Larour 1, J. Matarranz 1, C. Stehlé 2, N. Champion 2, A. Ciardi 2 1 Laboratoire de.
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Pre-formed channels for laser-plasma accelerators Euroleap kickoff meeting May, 2006, Orsay, France N. C. Lopes Grupo de Lasers e Plasmas Instituto Superior.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
WHY ???? Ultrashort laser pulses. (Very) High field physics Highest peak power, requires highest concentration of energy E L I Create … shorter pulses.
Ultra-thin Gas Jet for Non-Invasive Beam Halo Measurement Adam Jeff CERN & University of Liverpool Workshop on Beam Halo Monitoring 19th September 2014.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Multi-GeV laser driven proton acceleration in the high current regime Laser-driven acceleration is living a major revolution (PW era)… …but will ever be.
Development and application of plasma- waveguide based soft x-ray lasers Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central.
The physical mechanisms of short-pulse laser ablation D. Von der Linde, K. Sokolowski-Tinten A summary report by Ryan Newson June 25, 2004.
Alvaro Sanchez Gonzalez Prof. Jon Marangos Prof. Jim Clarke
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Stable and Tuneable Laser Plasma Accelerators
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
MPQ Acknowledgments for Collaboration: G. Mourou, X. M. Zhang,Y. M. Shin, D. Farinella, T. Saeki, D. Farinella, N. Naumova, K. Nakajima, S. Bulanov, A.
E-217 FACET users meeting 9/15/14 Ken Marsh. What happens to the experiment when laser fires full power in Lithium? Do we ionize the helium buffer zones?
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Nonlinear optical effect in the soft x-ray region by two-photon ionization of He + Nonlinear optical effect in the soft x-ray region by two-photon ionization.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Fusion Technology Institute 4/5/2002HAPL1 Ion Driven Fireballs: Calculations and Experiments R.R. Peterson, G.A. Moses, and J.F. Santarius University of.
Ultrafast Laser Interactions with Atoms, Ions and Molecules
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Bubble radius (in radial and axial direction) over time for single laser pulses.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Laser wake field acceleration using nano-particles Laser wake field acceleration using nano-particles Department of Physics and Photon Science, Gwangju.
Study of transient fields with Proton Imaging Toma Toncian Bad Breisig October 2008 GRK1203 TexPoint fonts used in EMF. Read the TexPoint manual before.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the noncollinear optical parametric amplification (NOPA) geometry.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
(LASER) PLASMA DIAGNOSTICS
Friedrich-Schiller-University Jena
GRK1203 workshop, Oelde, Febr 2008 GRK1203 workshop on laser plasma physics and magnetic plasma confinement Laser.
Studies of the energy transfer
Laboratoire d’Optique Appliquée
All-Optical Injection
Xiao Min Tong and Chii Dong Lin
Elma Carvajal Gallardo
2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses
Short focal length target area: X-ray & ion sources and applications
Presentation transcript:

GRK-1203 Workshop Oelde Watching a laser pulse at work - Laser-plasma interaction seen on ultra-short timescales - Ralph Jung - Institut für Laser und Plasmaphysik -

What kind of work can a laser pulse do? Heat Zum Vergleich: 2x10^21 W/cm^2 entspricht… Ionize Push Illuminate

The potentially most popular examples for high-intensity laser-plasma interaction Zum Vergleich: 2x10^21 W/cm^2 entspricht…

Summary Watching a laser pulse at work - Laser-plasma interaction seen on ultra-short timescales - Task: Observe optically the breakdown of the the material caused by an ultra-short laser pulse. Zum Vergleich: 2x10^21 W/cm^2 entspricht… What happens there (ionization) ? How can you observe the ionization front (in principle) ? How looks a typical pump-probe experiment (practically) ? Data: High-resolution photos of the interaction and comparison with 3D-PIC simulations.

What happens there? - A typical laser-plasma experiment - Laser as a „black box“ Focusing optics Target volume Zum Vergleich: 2x10^21 W/cm^2 entspricht…, Limit im Verstärker bis Selbstfokussierung einsetzt: einige GW/cm^2, proportional zur Intensität, nicht zur Fluenz (Energie), typische Streckung 10.000x, sweep = linearer Frequenzverlauf, vershciedene Frequenzen erscheinen zu unterschiedlichen Zeiten, das Gitter dispergiert das Spektrum und streckt den Puls dadurch zeitlich Wavelength: l Pulse energy: E Pulse duration: Dt Focal spot diameter: typically 5-10 mm (FWHM)

Modern ultra-short pulse lasers are based on the CPA-technique ~ nJ ~ nJ Zum Vergleich: 2x10^21 W/cm^2 entspricht…, Limit im Verstärker bis Selbstfokussierung einsetzt: einige GW/cm^2, proportional zur Intensität, nicht zur Fluenz (Energie), typische Streckung 10.000x, sweep = linearer Frequenzverlauf, vershciedene Frequenzen erscheinen zu unterschiedlichen Zeiten, das Gitter dispergiert das Spektrum und streckt den Puls dadurch zeitlich Amplification:106-1012 Verstärkung: 106-1012 Few-Cycle Pulse 5 fs, 100 Gigawatt Sub-10-fs-Pulse 5 fs, 100 Gigawatt ~ mJ ~ mJ „Chirped Pulse Amplification“ [Strickland and Mourou, 1985]

Modern ultra-short pulse lasers are based on the CPA-technique ~ nJ ~ nJ Zum Vergleich: 2x10^21 W/cm^2 entspricht… Amplification:106-1012 Verstärkung: 106-1012 Ultra-high power laser 500 fs, 1 Petawatt Sub-10-fs-Pulse 5 fs, 100 Gigawatt ~ kJ ~ kJ „Chirped Pulse Amplification“ [Strickland and Mourou, 1985]

What happens there? - A typical laser-plasma experiment - Laser as a „black box“ Focusing optics Target volume Zum Vergleich: 2x10^21 W/cm^2 entspricht…, Limit im Verstärker bis Selbstfokussierung einsetzt: einige GW/cm^2, proportional zur Intensität, nicht zur Fluenz (Energie), typische Streckung 10.000x, sweep = linearer Frequenzverlauf, vershciedene Frequenzen erscheinen zu unterschiedlichen Zeiten, das Gitter dispergiert das Spektrum und streckt den Puls dadurch zeitlich

Ionization mechanisms I = 0 W/cm2 E = 0 V/m Example: H-Atom Bohr radius: The phase of the electric field of the pulse after the interaction with the gas was measured with a SPIDER. Electric field: Light intensity: Electron undisturbed 1965 Rubi Laser: Ionization !

Ionization mechanisms I = 1.1012 W/cm2 E = 2.7.109 V/m Example: H-Atom Bohr radius: Perturbation theory Electric field: Light intensity: Multi-Photon Ionization 1965 Rubi Laser: Ionization !

Ionization mechanisms I > 1.1012 W/cm2 E > 2.7.109 V/m Example: H-Atom Bohr radius: Also: I < 10^13: Perturbation theory, Hier: Löse zeitabhängige Schrödinger Gleichung in Single-Active-Electron Approximation (SAE), problematisch, da Wellenpaket wegläuft (continuum-continuum-transitions) bei höher werdenden Intensitäten. The multiphoton ionization (MPI) of noble gases by strong laser fields can be well described by time dependent quantum mechanical calculations within the single active electron approximation (SAE). -> Sequential ionization Electric field: Light intensity: Above Threshold Ionization 1965 Rubi Laser: Ionization !

Ionization mechanisms I = 1.1014 W/cm2 E = 2.7.1010 V/m Example: H-Atom Bohr radius: Electric field: Light intensity: Tunneling Ionization

Ionization mechanisms I = 3.45.1014 W/cm2 E = 5.1.1011 V/m Example: H-Atom Bohr radius: The phase of the electric field of the pulse after the interaction with the gas was measured with a SPIDER. Electric field: Light intensity: Barrier Suppression Ionization

Ionization mechanisms The phase of the electric field of the pulse after the interaction with the gas was measured with a SPIDER.

Ionization mechanisms Barrier Suppression Ionization The phase of the electric field of the pulse after the interaction with the gas was measured with a SPIDER. Augst et. al. PRL 63 (20), 2212 (1989)

Ionization mechanisms Keldysh ionization rates (1965), extended form by Ammosov, Delone an Krainov (1986) ADK-Theory For hydrogen like atoms, Influence of pulse duration: Pulse duration may be relevant ! Take also level depletion into account Nagaya et. al. J. Phys. Soc. of Japan, 75 (2006) 044302

What happens there? - A typical laser-plasma experiment - Laser as a „black box“ Focusing optics Target volume Zum Vergleich: 2x10^21 W/cm^2 entspricht…, Limit im Verstärker bis Selbstfokussierung einsetzt: einige GW/cm^2, proportional zur Intensität, nicht zur Fluenz (Energie), typische Streckung 10.000x, sweep = linearer Frequenzverlauf, vershciedene Frequenzen erscheinen zu unterschiedlichen Zeiten, das Gitter dispergiert das Spektrum und streckt den Puls dadurch zeitlich e- + + e- e- +

Optical properties of the plasma channel created Way of a beam path through the plasma: Zum Vergleich: 2x10^21 W/cm^2 entspricht… s

Hence: Diagnose the plasma with a second, well timed laser pulse Typical setup of a „pump-probe“ experiment Zum Vergleich: 2x10^21 W/cm^2 entspricht… Image the plasma channel onto a camera Optical probing : shadowgraphy, interferometry, polarimetry etc. Temporal resolution given by probe pulse duration

The sub-10-fs laser system used here Central wavelength: l0 = 800 nm Pulse duration (fwhm): t = 8 fs Pulse energy: E = 150 mJ Intensity in focus: I = 1-2 . 1016 W/cm2 + Hollow-fibre + compressor Pulse consists only of few optical cycles 3.5.1011 V/m Electric field Pre-pulse level so low that no measureable pre-plasma produced 3 mm High ADK-ionization rates expected Time or space

Gastarget The pulse ionizes the gas and an optically transparent plasma is produced x x Pulsed gas jet: Supersonic expansion, Mach 3.3 with up to 3.1020 particles/cm3 (~10 bar) Laser pulse z z 10 fs are a slap of light of just 3 microns in length Focus diamater about 5 microns Gases: Helium, Neon, Argon, Nitrogen

Geometrie des „pump-probe“ Experiments Geometry of „pump-probe“ experiment x (Kalorimetrie/ Spektroskopie) Pulsed gas jet: Supersonic expansion, Mach 3.3 with up to 3.1020 particles/cm3 (~10 bar) „Pump“- pulse z y Gases: Helium, Neon, Argon, Nitrogen „Probe“- pulse (opt. imaging / shadowgrams / interferograms)

Focused shadowgraphy Explain focused shadowgraphy

Focused shadowgraphy

Focused shadowgraphy

Focused shadowgraphy

Focused shadowgraphy

Focused shadowgraphy

A „Pump-Probe“- experiment using an ultra-short optical probe pulse BBO 40 microns in thickness, 10 x microscope objective, High magnification 44 x, High resolution of better than 1 micron elliptical illuminating spot of about 50 µm x 150 µm (both FWHM). group velocity dispersion effects in BBO (D2 = 37,0 fs2/mm) is of the order of less than 0.1%. View inside Target Chamber

Typische Aufnahmen des Plasmakanals High-resolution images of the ionization front using „focused shadowgraphy“ Example: Helium at a neutral density of n0 = 2 – 3 . 1019 cm-3  = 0 fs  = +30 fs Zeitauflösung ~ 10 fs (Ortsauflösung 1 mm)

From the shadowgrams the electron density within the channel can be obtaind Plasma Plasma Neutral gas Neutralgas Feld ionization Feldionisation

3D-Particle-In-Cell simulation of the ionization front

3D-Particle-In-Cell simulation of the ionization front Simulated electron density produced by pump-pulse

3D-Particle-In-Cell simulation of the ionization front

3D-Particle-In-Cell simulation of the ionization front Simulation of deflection

3D-Particle-In-Cell simulation of field-ionization within the gas Plasma-Simulation-Code (PSC) (Hartmut Ruhl) Electron density at t = 50,0 fs Elektronendichte t = 66,7 fs Electron density at t = 66,7 fs He2+ He+ . 1019 cm-3 Example: Helium at a neutral density of n0 = 1 . 1019 cm-3

3D-Particle-In-Cell simulation of field-ionization within the gas Plasma-Simulation-Code (PSC) (Hartmut Ruhl) <Z> = 1,5 <Z> = 1,5 Electron density at t = 50,0 fs Electron density at t = 66,7 fs . 1019 cm-3 Example: Helium at a neutral density of n0 = 1 . 1019 cm-3

Plasma-Simulation-Code (PSC) (Hartmut Ruhl) 3D-PIC simulation of the interaction between plasma channel and probe pulse Plasma-Simulation-Code (PSC) (Hartmut Ruhl) Electron density at t = 50,0 fs Shadowgram at t = 74,7 fs . 1019 cm-3 Example: Helium at a neutral density of n0 = 1 . 1019 cm-3

Summary What happens there (ionization) ? Task: Observe optically the breakdown of the the material caused by an ultra-short laser pulse. What happens there (ionization) ? Ionization mechanism (Multiphoton, Tunneling, BSI, ADK-Rates) Zum Vergleich: 2x10^21 W/cm^2 entspricht… How can you observe the ionization front (in principle) ? Optical properties of a laser-produced plasma, „Pump-Probe“-technique, trajectories of probe-puls rays How looks a typical pump-probe experiment (practically) ? Experimental setup, some pictures High-resolution photos of the interaction and comparison with 3D-PIC simulations. Time-resolved shadowgrams, PIC results