Chapter 10 - 1 ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify... -- the.

Slides:



Advertisements
Similar presentations
Engr 2110 – Chapter 9 Dr. R. R. Lindeke
Advertisements

Phase Diagrams Continued
L10B: Phases in equilibrium with one another: Composition and amount of each The temperature and pressure must be the same in each phase in equilibrium.
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Phase Diagrams.
CHAPTER 8 Phase Diagrams 8-1.
Microstructures in Eutectic Systems: I
Phase Equilibria: Solubility Limit Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) Co=Composition (wt% sugar) L (liquid solution.
Chapter 9 Sections:9.2, 9.3, 9.4, 9.5.
Chapter 9: Phase Diagrams
Phase Diagrams Phase: A homogeneous portion of a system that have uniform physical and chemical characteristics. Single phase Two phases For example at.
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Development of microstructure.
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Phase Diagrams.
Phase Diagrams Chapter 10.
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
Chapter Outline: Phase Diagrams
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Lecture 9 Phase Diagrams 8-1.
Chapter 9 Phase Diagrams.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
ENGR-45_Lec-22_PhaseDia-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Growth of Solid Equilibrium.
ENGR-45_Lec-21_PhasrDia-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
Ex: Phase Diagram: Water-Sugar System THE SOLUBILITY LIMIT.
Chapter ISSUES TO ADDRESS... When we mix two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Mechanical & Aerospace Engineering West Virginia University 9 – Phase Diagram (2) (Phase Reactions)
ME 210 Exam 2 Review Session Dr. Aaron L. Adams, Assistant Professor.
Phase Diagrams melting / production process / alloying (strength, Tm...) heat treatment microstructure material properties system (e.g. Cu-Ni) components.
CHAPTER 10: PHASE DIAGRAMS
The Structure and Dynamics of Solids
CHAPTER 9: PHASE DIAGRAMS
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron 1.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
ME 330 Engineering Materials
Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition.
Chapter 10: Phase Transformations
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Solid State Reactions Phase Diagrams and Mixing
Metallic Materials-Phase Diagrams
Part 6 Chemistry Engineering Department 23/10/2013
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Phase Diagrams–Equilibrium Microstructural Development
Chapter 9: Phase Diagrams
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Introduction to Materials Science and Engineering
CHAPTER 9: Definitions A. Solid Solution
IRON-CARBON (Fe-C) PHASE DIAGRAM
Phase Diagrams.
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron Weeks
Fully Miscible Solution
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
Phase Diagrams.
Chapter 10: Phase Diagrams
EX: Pb-Sn EUTECTIC SYSTEM (1)
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
IE-114 Materials Science and General Chemistry Lecture-10
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the ____________ (e.g., wt% Cu - wt% Ni), and -- the temperature (T ) then... How many __________ form? What is the composition of each __________? What is the _________ of each phase? Chapter 10: _______ Diagrams Phase B Phase A Nickel atom Copper atom

Chapter Phase Equilibria: Solubility Limit Question: What is the __________ limit for sugar in water at 20ºC? Answer: ___ wt% sugar. At 20ºC, if C < 65 wt% sugar: syrup At 20ºC, if C > 65 wt% sugar: syrup + sugar 65 Solubility Limit: Maximum ____________ for which only a _____________ _________ exists. Sugar/Water Phase Diagram Sugar Temperature (ºC) C= Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit L (liquid) + S (solid sugar) Water Adapted from Fig. 10.1, Callister & Rethwisch 4e. Solution – solid, liquid, or gas solutions, single phase Mixture – ________________________

Chapter Components: ________________________________________________ (e.g., Al and Cu) Phases: The physically and chemically distinct material regions that form (e.g.,  and  ). Aluminum- Copper _______ Components and Phases  (darker _______)  (lighter _______) Adapted from chapter- opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

Chapter Temperature (ºC) C= Composition (wt% sugar) L ( liquid solution i.e., syrup) L (liquid) + S (solid sugar) Effect of Temperature & Composition Altering ______________________: path A to B. Altering ______________________: path B to D. water- sugar system Adapted from Fig. 10.1, Callister & Rethwisch 4e. D (100ºC,C = 90) __ phases B (100ºC,C = 70) __ phase A (20ºC,C = 70) __ phases

Chapter Criteria for Solid Solubility Crystal Structure electroneg r (nm) NiFCC CuFCC Both have the same _______________________ and have similar __________________ and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility. _____________ (e.g., Ni-Cu solution) ________________________ in one another for all proportions.

Chapter Phase Diagrams Indicate phases as a function of T, C, and P. For this course: - binary systems: ___________________. - independent variables: _________ (P = 1 atm is almost always used). Phase Diagram for Cu-Ni system 2 phases: ____________ 3 different phase fields: _______ wt% Ni T(ºC) L (liquid)  (FCC solid solution) L +  liquidus solidus Adapted from Fig. 10.3(a), Callister & Rethwisch 4e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter Cu-Ni phase diagram Isomorphous Binary Phase Diagram Phase diagram: Cu-Ni system. System is: -- ___________ i.e., 2 components: Cu and Ni. -- ___________ i.e., complete _________ of one component in another;  phase field extends from 0 to 100 wt% Ni. wt% Ni T(ºC) L (liquid)  (FCC solid solution) L +  liquidus solidus Adapted from Fig. 10.3(a), Callister & Rethwisch 4e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter 10 - wt% Ni T(ºC) L (liquid)  (FCC solid solution) L +  liquidus solidus Cu-Ni phase diagram 8 Phase Diagrams : Determination of phase(s) present Rule 1: If we know ____________, then we know: -- which phase(s) is (are) present. Examples: A(1100ºC, 60 wt% Ni): ________________ B(1250ºC, 35 wt% Ni): ________________ B (1250ºC,35) A(1100ºC,60) Adapted from Fig. 10.3(a), Callister & Rethwisch 4e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter wt% Ni T(ºC) L (liquid)  (solid) L +  liquidus solidus L +  Cu-Ni system Phase Diagrams : Determination of phase compositions Rule 2: If we know T and C 0, then we can determine: -- the composition of each phase. Examples: TATA A 35 C0C0 32 CLCL At T A = 1320ºC: _______________________ C L _____________________ At T B = 1250ºC: _______________________ CLCL = C liquidus ( = ___ wt% Ni) CC = C solidus ( = ___ wt% Ni) At T D = 1190ºC: _______________________ C  _____________________ Consider C 0 = 35 wt% Ni D TDTD tie line 4 CC 3 Adapted from Fig. 10.3(a), Callister & Rethwisch 4e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). B TBTB

Chapter Rule 3: If we know T and C 0, then can determine: -- the _________________ of each phase. Examples: At T A : Only Liquid (L) present W L = _____, W  = _____ At T D : Only Solid (  ) present _____________________ Phase Diagrams : Determination of phase weight fractions wt% Ni T(ºC) L (liquid)  (solid) L +  liquidus solidus L +  Cu-Ni system TATA A 35 C0C0 32 CLCL B TBTB D TDTD tie line 4 CC 3 R S At T B : _____________________ = 0.27 WLWL  S R+S WW  R R+S Consider C 0 = 35 wt% Ni Adapted from Fig. 10.3(a), Callister & Rethwisch 4e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter _________ – connects the phases in equilibrium with each other – also sometimes called an ___________ The Lever Rule What fraction of each phase? Think of the tie line as a lever (teeter-totter) MLML MM RS wt% Ni T(ºC) L (liquid)  (solid) L +  liquidus solidus L +  B T B tie line C0C0 CLCL CC S R Adapted from Fig. 10.3(b), Callister & Rethwisch 4e.

Chapter wt% Ni L (liquid)  (solid) L +  L +  T(ºC) A 35 C0C0 L: 35wt%Ni Cu-Ni system Phase ________: Cu-Ni system. Adapted from Fig. 10.4, Callister & Rethwisch 4e. Consider ____________ changes that accompany the __________ of a C 0 = 35 wt% Ni alloy Ex: Cooling of a Cu-Ni Alloy  : 43 wt% Ni L: 32 wt% Ni B  : 46 wt% Ni L: 35 wt% Ni C E L: 24 wt% Ni  : 36 wt% Ni D

Chapter 10 - ______rate of cooling: Equilibrium structure _____ rate of cooling: Cored structure First  to solidify: 46 wt% Ni Last  to solidify: < 35 wt% Ni 13 _______________________ Cu-Ni _____: First  to solidify has C  = ____ wt% Ni. Last  to solidify has C  = ____ wt% Ni. Cored vs Equilibrium Structures Uniform C  : 35 wt% Ni

Chapter Mechanical Properties: Cu-Ni System Effect of ________________________ on: -- Tensile __________ (TS)-- Ductility (%EL) Adapted from Fig. 10.6(a), Callister & Rethwisch 4e. Tensile Strength (MPa) Composition, wt% Ni Cu Ni TS for pure Ni TS for pure Cu Elongation (%EL) Composition, wt% Ni Cu Ni %EL for pure Ni %EL for pure Cu Adapted from Fig. 10.6(b), Callister & Rethwisch 4e.

Chapter _________________ has a special composition with a min. melting T. Adapted from Fig. 10.7, Callister & Rethwisch 4e. Binary-Eutectic Systems 3 single phase regions (L, ,  ) Limited solubility: __________________ T E : No _______ below T E : Composition at temperature T E C E Ex.: Cu-Ag system Cu-Ag system L (liquid)  L +  L+    C,wt% Ag T(ºC) CECE TETE ºC cooling heating ____________ reaction L(C E )  (C  E ) +  (C  E )

Chapter L+  L+   +  200 T(ºC) 18.3 C, wt% Sn L (liquid)  183ºC  For a 40 wt% Sn-60 wt% Pb alloy at 150ºC, determine: -- the phases present Pb-Sn system EX 1: Pb-Sn Eutectic System Answer:  +  -- the phase compositions -- the relative amount of each phase C0C0 11 CC 99 CC S R Answer: C  = __ wt% Sn C  = __ wt% Sn W  = C  - C 0 C  - C  = = 59 __ = _____ S ____ = W  = C 0 - C  C  - C  = R R+SR+S = 29 __ = _____ = Answer: Adapted from Fig. 10.8, Callister & Rethwisch 4e.

Chapter Answer: C  = __ wt% Sn -- the phase compositions L+   +  200 T(ºC) C, wt% Sn L (liquid)   L+  183ºC For a 40 wt% Sn-60 wt% Pb alloy at 220ºC, determine: -- the phases present: Pb-Sn system EX 2: Pb-Sn Eutectic System -- the relative amount of each phase W  = C L - C 0 C L - C  = = 6 __ = _____ WLWL = C 0 - C  C L - C  = 23 __ = _____ 40 C0C0 46 CLCL 17 CC 220 S R Answer:  + L C L = __ wt% Sn Answer: Adapted from Fig. 10.8, Callister & Rethwisch 4e.

Chapter Microstructural Developments in Eutectic Systems I 0 L +  200 T(ºC) C,wt% Sn C0C L  30  +  400 (room T solubility limit) TETE (Pb-Sn System)  L L: C 0 wt% Sn  : C 0 wt% Sn Adapted from Fig , Callister & Rethwisch 4e. For alloys for which C o < 2 wt% Sn Result: at room temperature --____________ with grains of __________ having __________ C o

Chapter Adapted from Fig , Callister & Rethwisch 4e. Microstructural Developments in Eutectic Systems II Pb-Sn system L +  200 T(ºC) C,wt% Sn C0C L  30  +  400 (sol. limit at T E ) TETE 2 (sol. limit at T room ) L  L: C 0 wt% Sn    : C 0 wt% Sn For alloys for which 2 wt% Sn < C o < 18.3 wt% Sn Result: at ___________ in  +  range --polycrystalline with __ grains and small __-phase _______

Chapter Adapted from Fig , Callister & Rethwisch 4e. Microstructural Developments in Eutectic Systems III Adapted from Fig , Callister & Rethwisch 4e. 160  m Micrograph of Pb-Sn eutectic microstructure Pb-Sn system LL  200 T(ºC) C, wt% Sn L   L+  183ºC 40 TETE 18.3  : 18.3 wt%Sn 97.8  : 97.8 wt% Sn CECE 61.9 L: C 0 wt% Sn For alloy of composition C o = C E Result: Eutectic microstructure (________ structure) --alternating layers (__________) of  and  phases.

Chapter Lamellar Eutectic Structure Adapted from Figs & 10.15, Callister & Rethwisch 4e.

Chapter For ______ for which 18.3 wt% Sn < C 0 < 61.9 wt% Sn Result:  phase particles and a ________ microconstituent Microstructural Developments in Eutectic Systems IV SR 97.8 S R primary  eutectic   Adapted from Fig , Callister & Rethwisch 4e. Pb-Sn system L+  200 T(ºC) C, wt% Sn L   L+  40  +  TETE L: C 0 wt% Sn L  L  WLWL = (1-W  ) = 0.50 C  = ____ wt% Sn CLCL S R +S W  = = 0.50 Just above T E : Just below T E : C  = _____ wt% Sn C  S R +S W  = = 0.73 W  = 0.27

Chapter L+  L+   +  200 C, wt% Sn L   TETE 40 (Pb-Sn System) Hypoeutectic & Hypereutectic Adapted from Fig. 10.8, Callister & Rethwisch 4e. (Fig adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) 160  m eutectic micro-constituent Adapted from Fig , Callister & Rethwisch 4e. hypereutectic: (illustration only)       Adapted from Fig , Callister & Rethwisch 4e. (Illustration only) (Figs and from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) 175  m       hypoeutectic: C 0 = 50 wt% Sn Adapted from Fig , Callister & Rethwisch 4e. T(°C) 61.9 eutectic eutectic: C 0 = 61.9 wt% Sn

Chapter Intermetallic Compounds Mg 2 Pb Adapted from Fig , Callister & Rethwisch 4e. Note: intermetallic compound exists as a ____ on the diagram - not an ______ - because of stoichiometry (i.e. composition of a ___________ is a fixed value).

Chapter Eutectic, Eutectoid, & Peritectic Eutectic - liquid transforms to two solid phases L  +  (For Pb-Sn, 183ºC, 61.9 wt% Sn) cool heat _______ – one solid phase __________ to two other solid phases S 2 S 1 +S 3   + Fe 3 C (For Fe-C, 727  C, 0.76 wt% C) __________ compound - cementite cool heat cool heat ________ - liquid and one solid phase transform to a second solid phase S 1 + L S 2  + L  (For Fe-C, 1493°C, 0.16 wt% C)

Chapter Eutectoid & Peritectic Cu-Zn Phase diagram Adapted from Fig , Callister & Rethwisch 4e. ________transformation   +  ________transformation  + L 

Chapter Ceramic Phase Diagrams MgO-Al 2 O 3 diagram: Adapted from Fig , Callister & Rethwisch 4e. 

Chapter Iron-Carbon (Fe-C) Phase Diagram 2 important points - _________ (B):  + Fe 3 C - ________ (A): L  + Fe 3 C Adapted from Fig , Callister & Rethwisch 4e. Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C   +   (Fe) C, wt% C 1148ºC T(ºC)  727ºC = T eutectoid 4.30 Result: _______ = alternating layers of  and Fe 3 C phases 120  m (Adapted from Fig , Callister & Rethwisch 4e.) 0.76 B    A L+Fe 3 C Fe 3 C (cementite-hard)  (ferrite-soft)

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  (Fe) C, wt% C 1148ºC T(ºC)  727ºC (Fe-C System) C0C Hypoeutectoid Steel Adapted from Fig , Callister & Rethwisch 4e. __________ ferrite pearlite 100  m ______________ _____  pearlite               Adapted from Figs and 10.33,Callister & Rethwisch 4e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.)

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  (Fe) C, wt% C 1148ºC T(ºC)  727ºC (Fe-C System) C0C Hypoeutectoid Steel        sr W  = s/(r + s) W  =(1 - W  ) R S  pearlite W pearlite = W  W  ’ = S/(R + S) W =(1 – W  ’ ) Fe 3 C Adapted from Fig , Callister & Rethwisch 4e. __________ ferrite pearlite 100  m _______________ ______ Adapted from Figs and 10.33,Callister & Rethwisch 4e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.)

Chapter Hypereutectoid Steel Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C  L+Fe 3 C  (Fe) C, wt%C 1148ºC T(ºC)  (Fe-C System) 0.76 C0C0 Fe 3 C             Adapted from Fig , Callister & Rethwisch 4e. _____________ Fe 3 C 60  m ________________ steel pearlite Adapted from Figs and 10.36,Callister & Rethwisch 4e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.)

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C  L+Fe 3 C  (Fe) C, wt%C 1148ºC T(ºC)  Hypereutectoid Steel (Fe-C System) 0.76 C0C0 pearlite Fe 3 C     x v VX W pearlite = W  ______________ W  =(1-W  ) W  =x/(v + x) Fe 3 C Adapted from Fig , Callister & Rethwisch 4e. proeutectoid Fe 3 C 60  m Hypereutectoid steel pearlite Adapted from Figs and 10.36,Callister & Rethwisch 4e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.)

Chapter Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: a)The compositions of Fe 3 C and ferrite (  ). b)The amount of cementite (in grams) that forms in 100 g of steel. c)The amounts of pearlite and proeutectoid ferrite (  ) in the 100 g.

Chapter Solution to Example Problem a) Using the RS tie line just below the _____________ Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C, wt% C 1148ºC T(ºC) 727ºC C0C0 R S C Fe C 3 CC b)Using the ______ rule with the tie line shown C  = ______ wt% C C Fe C = ____ wt% C 3 Amount of Fe 3 C in ______ g = (100 g)W Fe 3 C = (100 g)(0.057) = ____ ______

Chapter Solution to Example Problem (cont.) c) Using the VX tie line just above the eutectoid and realizing that C 0 = 0.40 wt% C C  = wt% C C pearlite = C  = _______ wt% C Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C, wt% C 1148ºC T(ºC) 727ºC C0C0 V X CC CC Amount of pearlite in 100 g = (100 g)W pearlite = (100 g)(0.512) = _____

Chapter 10 - VMSE: Interactive Phase Diagrams 36 Change alloy composition Microstructure, phase compositions, and phase fractions respond interactively

Chapter Alloying with Other Elements T eutectoid changes: Adapted from Fig ,Callister & Rethwisch 4e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) T Eutectoid (°C) wt. % of alloying elements Ti Ni Mo Si W Cr Mn C eutectoid changes: Adapted from Fig ,Callister & Rethwisch 4e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo

Chapter Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. Important phase diagram phase transformations include eutectic, eutectoid, and peritectic. Summary