ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.

Slides:



Advertisements
Similar presentations
“Cellular Respiration”
Advertisements

ADP, ATP and Cellular Respiration
copyright cmassengale
6H 2 O + 6CO 2 + ATPC 6 H 12 O 6 + 6O 2 . Recycling of Molecules for energy production.
Biology 1/18/11 New learning Targets & Table of Contents Chapter 9 Read and Define vocabulary 9.1 PS Lab 9.1 Notes 9.1.
Cellular Respiration CHAPTER 7
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 7 How Cells Make ATP: Energy-Releasing Pathways.
Cellular Respiration How Cells Harvest Chemical Energy – Cellular Respiration.
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration Copyright Cmassengale. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate.
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration Copyright Cmassengale.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration This is the process by which animals process food to obtain the calories needed for energy to do the cellular processes necessary.
Copyright Cmassengale
ADP, ATP and Cellular Respiration Copyright Cmassengale.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
ADP, ATP and Cellular Respiration CHAPTER 7 Copyright Cmassengale.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh EditionCHAPTER 7 How Cells Make ATP: Energy-Releasing Pathways Chapter 8: Cellular Respiration.
CHAPTER 4 Cellular Respiration: Harvesting Chemical Energy.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration Where do animal cells get their energy?
Cellular Respiration How our body makes ATP, ENERGY!!
1 Cellular Respiration. 2 oxygen (O 2 ) energy macromolecules (glucose) energy (ATP)water (H 2 O). An oxygen (O 2 ) requiring process that uses energy.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration. When is ATP Made in the Body? During a Process called Cellular Respiration that takes place in both Plants & Animals.
ADP, ATP and Cellular Respiration
Where do animal cells get their energy?
Cellular Respiration “Making energy in cells”.
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
Photosynthesis and Cellular Respiration
Standards 21st Century Life and Careers (2014) ST-SM.3 Analyze the impact that science and mathematics has on society. 21st Century Life and Careers.
UNIT 3 Cell Processes: ATP, Cellular Respiration, Photosynthesis
ADP, ATP and Cellular Respiration
How Cells Harvest Chemical Energy – Cellular Respiration
Cellular Respiration.
Watch this: Cellular Respiration Watch this:
UNIT 3 Cell Processes: ATP, Cellular Respiration, Photosynthesis
Overview of Cellular Respiration
ADP, ATP and Cellular Respiration
How Living Things Get Energy From Glucose
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
How our body makes ATP, ENERGY!!
The ADP-ATP Cycle ATP Synthetase ATP-ase.
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
How Cells Harvest Chemical Energy – Cellular Respiration
ADP, ATP and Cellular Respiration
ADP, ATP and Cellular Respiration
Presentation transcript:

ADP, ATP and Cellular Respiration

What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds

Chemical Structure of ATP 3 Phosphates Ribose Sugar Adenine Base

What Does ATP Do for You? It supplies YOU with ENERGY!

How Do We Get Energy From ATP? By breaking the high- energy bonds between the last two phosphates in ATP

How is ATP Re-Made? The reverse of the previous process occurs. Another Enzyme is used! ATP Synthetase

The ADP-ATP Cycle ATP-ase ATP Synthetase

When is ATP Made in the Body? During a Process called Cellular Respiration that takes place in both Plants & Animals

Cellular Respiration Includes pathways that require oxygen Includes pathways that require oxygen Glucose is oxidized and O 2 is reduced Glucose is oxidized and O 2 is reduced Glucose breakdown is therefore an oxidation-reduction reaction Glucose breakdown is therefore an oxidation-reduction reaction Breakdown of one glucose results in 36 to 38 ATP molecules Breakdown of one glucose results in 36 to 38 ATP molecules

Overall Equation for Cellular Respiration 6CO 2 + 6H e ATP’s C 6 H 12 O 6 + 6O 2 YIELDS

What Carries the Electrons? NAD + (nicotinadenine dinucleotide) acts as the energy carrier NAD + (nicotinadenine dinucleotide) acts as the energy carrier NAD + is a coenzyme NAD + is a coenzyme It’s Reduced to NADH when it picks up two electrons and one hydrogen ion It’s Reduced to NADH when it picks up two electrons and one hydrogen ion

Are There Any Other Electron Carriers? YES! Another Coenzyme! YES! Another Coenzyme! FAD+ (Flavin adenine dinucleotide) FAD+ (Flavin adenine dinucleotide) Reduced to FADH 2 Reduced to FADH 2

Other Cellular Respiration Facts Metabolic Pathway that breaks down carbohydrates Metabolic Pathway that breaks down carbohydrates Process is Exergonic as High-energy Glucose is broken into CO 2 and H 2 O Process is Exergonic as High-energy Glucose is broken into CO 2 and H 2 O Process is also Catabolic because larger Glucose breaks into smaller molecules Process is also Catabolic because larger Glucose breaks into smaller molecules

What are the Stages of Cellular Respiration? Glycolysis Glycolysis The Krebs Cycle The Krebs Cycle The Electron Transport Chain The Electron Transport Chain

Where Does Cellular Respiration Take Place? It actually takes place in two parts of the cell: It actually takes place in two parts of the cell: Glycolysis occurs in the Cytoplasm Krebs Cycle & ETC Takeplace in the Mitochondria Krebs Cycle & ETC Take place in the Mitochondria

Review of Mitochondria Structure Smooth outer Membrane Smooth outer Membrane Folded inner membrane Folded inner membrane Folds called Cristae Folds called Cristae Space inside cristae called the Matrix Space inside cristae called the Matrix

Diagram of the Process Occurs in Cytoplasm Occurs in Matrix Occurs across Cristae

Glycolysis Summary Takes place in the Cytoplasm Anaerobic (Doesn’t Use Oxygen) Requires input of 2 ATP Glucose split into two molecules of Pyruvate or Pyruvic Acid

Glycolysis Summary Also produces 2 NADH and 4 ATP Also produces 2 NADH and 4 ATP Pyruvate is oxidized to Acetyl CoA and CO 2 is removed Pyruvate is oxidized to Acetyl CoA and CO 2 is removed

Glycolysis Diagram

Fermentation Occurs when O 2 NOT present (anaerobic)  Occurs when O 2 NOT present (anaerobic)  Called Lactic Acid fermentation in muscle cells (makes muscles tired)  Called Alcoholic fermentation in yeast (produces ethanol)  Nets only 2 ATP

A Little Krebs Cycle History Discovered by Hans Krebs in 1937 Discovered by Hans Krebs in 1937 He received the Nobel Prize in physiology or medicine in 1953 for his discovery He received the Nobel Prize in physiology or medicine in 1953 for his discovery Forced to leave Germany prior to WWII because he was Jewish Forced to leave Germany prior to WWII because he was Jewish

Krebs Cycle Summary Requires Oxygen (Aerobic) Requires Oxygen (Aerobic) Cyclical series of oxidation reactions that give off CO 2 and produce one ATP per cycle Cyclical series of oxidation reactions that give off CO 2 and produce one ATP per cycle Turns twice per glucose molecule Turns twice per glucose molecule Produces two ATP Produces two ATP Takes place in matrix of mitochondria Takes place in matrix of mitochondria

Krebs Cycle Summary Each turn of the Krebs Cycle also produces 3NADH, 1FADH 2, and 2CO 2 Each turn of the Krebs Cycle also produces 3NADH, 1FADH 2, and 2CO 2 Therefore, For each Glucose molecule, the Krebs Cycle produces 6NADH, 2FADH 2, 4CO 2, and 2ATP Therefore, For each Glucose molecule, the Krebs Cycle produces 6NADH, 2FADH 2, 4CO 2, and 2ATP

Krebs Cycle ATP NETS: 3NADH, 1ATP, 1FADH 2, & 2CO 2

Electron Transport Chain Summary 34 ATP Produced 34 ATP Produced H 2 O Produced H 2 O Produced Occurs Across Inner Mitochondrial membrane Occurs Across Inner Mitochondrial membrane Uses coenzymes NAD+ and FAD+ to accept e- from glucose Uses coenzymes NAD+ and FAD+ to accept e- from glucose NADH = 3 ATP’s NADH = 3 ATP’s FADH 2 = 2 ATP’s FADH 2 = 2 ATP’s

Electron Transport Chain Animation Electron Transport Chain Animation