Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team T&C ITPA Mtg. Naka, Japan 31 March – 2 April 2009 Electron Scale Turbulence.

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
Confinement and Local Transport in the National Spherical Torus Experiment (NSTX) Stanley M. Kaye 1, M.G. Bell 1, R.E. Bell 1, C. W. Domier 2, W. Horton.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Wave-Particle Interactions TSG Mid-Run Assessment Gary Taylor NSTX Supported by NSTX Mid-Run Assessment Meeting June 17, College W&M Colorado Sch.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX NSTX Team Meeting Jan. 3, 2013 NSTX Team Meeting Jan. 3, 2013 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
EP-TSG session Meeting agenda et al. M. Podestà NSTX-U Research Forum 2015 EP-TSG session PPPL, Room B252 02/24/2015 NSTX-U Supported by Culham Sci Ctr.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
Supported by Office of Science NSTX S.M. Kaye for PPPL, U. Wisc., JHU, UCLA, UC Davis Groups NSTX-C-Mod Pedestal Workshop PPPL 7 Sept NSTX Capabilities.
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
NSTX-U Program Update J. Menard NSTX-U Team Meeting B318 May 7, 2013 NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Supported by Office of Science NSTX S.M. Kaye, W. Solomon and the NSTX Group PPPL 22 nd Fusion Energy Conference Geneva, Switzerland Oct , 2008 Momentum.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
DRM ISTW ‘07 1 Confinement, Transport and Turbulence Properties of NSTX Plasmas D. R. Mikkelsen, S.M. Kaye, R.E. Bell, B.P. LeBlanc, H. Park, G. Rewoldt,
ASC Five Year Plan Chapter Status Stefan Gerhardt NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu.
Wave Heating and Current Drive TSG: XMP for Recomissioning the HHFW System R.J. Perkins, J. C. Hosea Theory & Modeling: N. Bertelli NSTX-U Supported by.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
NSTX-U Collaboration Plans for UCLA PI: Neal A. Crocker Co-PI: Prof. Troy Carter Grad. Student (planned 2 nd year onward) PPPL Research Contacts and Collaborators:
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
Overview of Results from the FY10 National Spherical Torus Experiment Run Eric Fredrickson For the NSTX Team NSTX Supported by College W&M Colorado Sch.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
NSTX-Upgrade Magnetics And Related Diagnostics SPG NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
NSTX NSTX Team Meeting May 7, 2013 NSTX Team Meeting May 7, 2013 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Research Plan for Transport and Turbulence Physics in NSTX K. Tritz, JHU S. Kaye, PPPL and the NSTX Research Team NSTX PAC-25 LSB B318 February ,
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
NSTX NSTX Team Meeting –Masa Ono August 15, 2014 NSTX-U Team Meeting August 15, 2014 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
Supported by Office of Science NSTX K. Tritz, S. Kaye PPPL 2009 NSTX Research Forum PPPL, Princeton University Dec. 8-10, 2008 Transport and Turbulence.
Neutron diagnostic calibration transfer XMP D. Darrow and the NSTX Research Team XMP & XP review meeting Control Room Annex June 11, 2015 NSTX-U Supported.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Presentation transcript:

Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team T&C ITPA Mtg. Naka, Japan 31 March – 2 April 2009 Electron Scale Turbulence and Transport in NSTX Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin

NSTX NSTX Transport – UCSDFeb. 12, NSTX is Unique in its Ability to Address Critical Transport Issues NSTX features –Strong rotational shear that can influence ion and electron transport –Anomalous electron transport can be isolated: ions often close to neoclassical –Large range of  T spanning e-s to e-m turbulence regimes: assess impact of electromagnetic contribution to transport –Localized measurements of electron-scale turbulence (  e ~0.1 mm)

NSTX NSTX Transport – UCSDFeb. 12, Results of the Scaling Experiments Have Revealed Some Surprises Strong dependence of  E on B T  E,98y,2 ~ B T 0.15  E,98y,2 ~ I p 0.93 Weaker dependence on I p

NSTX NSTX Transport – UCSDFeb. 12, Variation of Electron Transport Primarily Responsible for B T Scaling Ions near neoclassical Neoclassical Broadening of T e & reduction in  e outside r/a=0.5 with increasing B T

NSTX NSTX Transport – UCSDFeb. 12, We Are Attempting to Develop an Understanding Based on Both Turbulence Measurements and Theory Turbulent fluctuations are measured with coherent scattering of 280 GHz waves The scattering geometry takes advantage of the anisotropy of plasma fluctuations (k  >>k || ~1/qR) and the curvature of magnetic field lines to obtain a resolution of Scattering Geometry On NSTX, we can measure electron gyroradius scale turbulence locally

NSTX NSTX Transport – UCSDFeb. 12, Electron-Scale Turbulence is Observed on NSTX and is Consistent With Expectations for ETG Modes Dependence on scale of T e r/a~0.3 k   e = GS2 E. Mazzucato, D. Smith

NSTX NSTX Transport – UCSDFeb. 12, Negative Magnetic Shear Reduces Turbulence – Consistent with ETG  A strong negative magnetic shear was obtained with the RF heating (3 MW) starting early in the plasma pulse when current penetration was not complete  The suppression of turbulent fluctuations coincides with the formation of a very large temperature gradient at the location of measurement – transport barrier? E. Mazzucato

NSTX NSTX Transport – UCSDFeb. 12, Negative Magnetic Shear Reduces Turbulence – Consistent with ETG k ┴  e  0.2 H. Yuh

NSTX NSTX Transport – UCSDFeb. 12, Near ETG Marginal Stability, Fluctuation Amplitudes Decrease When the ExB Shear Rate Exceeds the ETG Growth Rate D. R. Smith et al, submitted to PRL

NSTX NSTX Transport – UCSDFeb. 12, The Connection Between the ETG Turbulence and Electron Transport is Not Fully Understood - There is Some Success, However - Electron transport anomalous: controls B T scaling Consistent with variation of high-k fluctuations 3.5 kG 5.5 kG Heat flux due to high-k electron modes (ETG) consistent with levels inferred from TRANSP in H-modes for r/a>0.5

NSTX NSTX Transport – UCSDFeb. 12, There is a Qualitative Agreement Between Inferred e - Transport and Theoretical Expectations Strongly reversed shear e-ITBs show low high-k fluctuation power despite strong  T e gradient drive –  T e well above ETG critical gradient for reversed shear cases Jenko and Dorland (2002) NSTX H. Yuh

NSTX NSTX Transport – UCSDFeb. 12, Non-Linear Gyrokinetic Calculations with GTS Have Been Completed k r -2.6 First global ETG simulation for actual plasmas High-k scattering measurement k r -4.4 W. Wang (r/a=0.3) GTS Electrostatic Adiabatic ions (k r + k  ) Calculated transport rates factor of ten low! More work has to be done on this - Sensitivity analyses (  T e, magnetic shear) - Synthetic diagnostic

NSTX NSTX Transport – UCSDFeb. 12, Electron Transport May be Controlled by Multiple Mechanisms (Including E-M) Low-k microtearing important in low shear/“Hybrid” discharges Driven by  T, damped by strongly reversed magnetic shear Collisionality predicted to be low enough in NSTX-U for suppression of microtearing K.L. Wong

NSTX NSTX Transport – UCSDFeb. 12, Recent Observations Indicate High-Frequency Core E-M Fluctuations May Also Cause Electron Transport 2 MW4 MW6 MW D. Stutman Global Alfvén Eigenmodes

NSTX NSTX Transport – UCSDFeb. 12, Measured Turbulence Amplitudes Can Lead to High Electron Transport Rates  n/n ~10 -4 from high-k interferometry Multiple modes Assume ~15 modes  B/B~10 -2 (summed) GAEs found to affect trapped electrons primarily These amplitudes can give  e ’s up to 10 m 2 /s (ORBIT – N. Gorelenkov)

NSTX NSTX Transport – UCSDFeb. 12, Conclusions Electron transport always anomalous in NSTX, and often is primary energy loss channel –Ions neoclassical in standard H-modes (though neoclassical can be high in NSTX) Localized electron-scale turbulence measurements indicate the presence of ETG modes –Sensitive to  T e, magnetic shear and rotation shear –Non-linear gyrokinetic simulations and comparison to experiment have found mixed results Other mechanisms operative –Microtearing in “hybrid-like” (low magnetic shear) discharges –High-frequency electromagnetic modes (GAEs) potentially important Would like to develop JEX for both microtearing and GAE