Chapter 1 Review
Examples: Write the numeric expression 1.) Eight more than a number n 2.) The difference of six and a number 3.) The product of three and twelve
Order of Operations P – Parentheses E – Exponent M – Multiplication D – Division A – Addition S – Subtraction
Try: Solve 1.) (6 + 2) x 3 2.) (1 + 2)2 – 6 3.) 4 x 3 ÷ 2 4.) – 2 x 3
Try 1.) 3x + 5y when x = 4 and y = 16 2.) 5v – 4w ÷ 3 when v = 8 and w = 0 3.) 6x + 4 when x = 3 and y = 2 2y
1.) 492.) 81 3.) 364.) 1 25 Examples
Try 1.) 92.) ) 164.) 1 36
Simplifying Radicals Examples: 1.) 542.) 20
Examples 3.) 484.) 72
Commutative property of Addition: a + b = b + a Commutative property of Multiplication: a x b = b x a
Associative property of Addition: (a + b) + c = a + (b + c) Associative property of Multiplication: (a x b) x c = a x (b x c)
Additive Identity : Anything plus zero is that number Example: a + 0 = a
Multiplicative Identity – Anything times one is that number Example: a x 1 = a
Multiplicative Property of Zero: Anything times zero is zero Example: a x 0 = 0
Multiplicative Inverse (reciprocal) – two numbers that when multiplied equal 1. Flip the fraction a x 1 = 1 a
1.) = ) (6 + 7) + 3 = 6 + (7 + 3) 3.) 2 x 4 = 4 x 2 4.) (2 x 3) x 6 = 2 x (3 x 6) 5.) 4 = 4 6.) a = 3, 3 = c, a = c Which Property is this?
Try 1.) 4 – (-6) 2.) 7 – (-5) 3.)
Try 1.) 3 x -22.) 7 ÷ 7 3.) -6 x -24.) -3 ÷ 2
Dividing Fractions Flip and multiply Examples: 1.) -5 ÷ 42.) - 8 ÷
Distributive Property – a (b + c) = ab + ac Examples: 1.) 3(x + 3) 2.) -2 (x + 2y – 5)
Try 1.) 6(4x + 2) 2.) 5 (2x + 3y – 9) 3.) - (x – 4)
Examples: Simplify 1.) 2x – 5x 2 + 6x + 4x 2 2.) 6x +10x 2 – 9x 2 + 1
Try: Simplify 1.) 3x + 4x ) 3x 2 + 4x + 6x 3.) 3x 2 + 5x 2 + 6x – 2x