Flavor, Charm, CP Related Physics PASCOS, Taipei November 22, 2013 Hai-Yang Cheng Academia Sinica, Taipei.

Slides:



Advertisements
Similar presentations
23, June, 2005Beauty2005, Assisi, Italy Electroweak Penguin decays at Belle Akimasa Ishikawa KEK.
Advertisements

X IN L IU ( 劉新 ) Collaborated with Wei Wang and Yuehong Xie Department of Physics, Jiangsu Normal University 17 th Sep.,
C.D. LuSino-German1 Hadronic B Decays in Perturbative QCD Approach Formalism of perturbative QCD (PQCD) based on k T factorization Direct CP asymmetry.
Search for New Physics in B decays Tadashi Yoshikawa Nagoya U. KEKPH07 3/1 – 3/3.
Direct CP Asymmetries in hadronic D decays Cai-Dian Lü ( 吕才典 ) IHEP, Beijing Based on work collaborated with Hsiang-nan Li, Fu-Sheng Yu, arXiv: ,
Phenomenology of Charmless Hadronic B Decays Denis Suprun University of Chicago Thanks to C.-W. Chiang, M. Gronau, Z. Luo, J. Rosner for enjoyable collaborations.
1 Charmless Three-body Decays of B Mesons Chun-Khiang Chua Chung Yuan Christian University HEP2007, 20 July 2007, Manchester.
1 QCD Factorization with Final-State Interactions Chun-Khiang Chua Academia Sinica, Taipei 3rd ICFP, Cung-Li, Taiwan.
Hadronic B decays involving tensor mesons Hai-Yang Cheng ( 鄭海揚 ) Academia Sinica Properties of tensor mesons QCD factorization Comparison with experiment.
Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
1 SM expectations on sin2    from b → s penguins Chun-Khiang Chua Academia Sinica FPCP April 2006, Vancouver.
Rumin Wang G. R.. Lu& Y. D. Yang Work done in collaboration with G. R.. Lu & Y. D. Yang Huazhong Normal University Henan Normal University November 15,
Theory of Direct CP Violation in D  hh Chongqing, May 8, 2012 Hai-Yang Cheng ( 鄭海揚 ) Academia Sinica, Taipei Diagrammatical approach SU(3) breaking CP.
Puzzles in B physics Recent development in PQCD, QCDF, SCET Hsiang-nan Li Academia Sinica, Taiwan presented at Whepp9 Bhubaneswar Jan. 07, 2006.
Non-leptonic b → s,d decays (experiment) CKM 2014, Vienna, Austria 10-Sep-2014b -> s,d roundup, Fergus Wilson, STFC/RAL1.
Solving the B  K  Puzzle Cheng-Wei Chiang National Central University & Academia Sinica Cheng-Wei Chiang National Central University & Academia Sinica.
Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
C.D. LuICFP31 Some progress in PQCD approach Cai-Dian Lü (IHEP, Beijing) Formalism of Perturbative QCD (PQCD) Direct CP asymmetry Polarization in B 
CHARM-2007, Ithaca, NY Alexey Petrov (WSU) Alexey A. Petrov Wayne State University Table of Contents: Introduction CP-violation in charmed mesons Observables.
1 Resolving B-CP puzzles in QCD factorization - An overview of charmless hadronic B decays - Hai-Yang Cheng Academia Sinica Based on 3 papers with Chun-Khiang.
Iain Stewart MIT Iain Stewart MIT Nonleptonic Decays and the Soft Collinear Effective Theory Super B Factory Workshop, Hawaii, 2004.
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
1 Exclusive Baryonic B decays Hai-Yang Cheng Academia Sinica Two-body baryonic B decays Three-body baryonic B decays Radiative baryonic B decays 3 rd ICFP,
Constraints on  from Charmless Two- Body B Decays: Status and Perspectives James D. Olsen Princeton University Workshop on the CKM Unitarity Triangle.
Large electroweak penguin contribution in B decays T. Yoshikawa ( Nagoya ) 基研研究会「CPの破れと物質生成」 2005年 1月1 2日~14日 This talk is based on S. Mishima and T.Y.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
A window for New Physics in B s →KK decays Joaquim Matias Universitat Autònoma de Barcelona David London & JM, PRD (2004) David London &JM & Javier Virto,
ICFP05, NCU1 B → Kπ decays and new physics in the EW-penguin sector Yu, Chaehyun ( Yonsei University) October 6, 2005 In Collaboration with C.S. Kim, S.
Run-Hui Li Yonsei University Mainly based on R.H. Li, C.D. Lu, and W. Wang, PRD83:
Introduction to Flavor Physics in and beyond the Standard Model
1 Final state interactions in hadronic B decays Hai-Yang Cheng Academia Sinica FSIs BRs & CPV in B decays Polarization anomaly in B  K* QCD & Hadronic.
1 CP Violation and Final State Interactions in Hadronic Charmless B Decays Hai-Yang Cheng Academia Sinica FSIs DCPV in B  K , ,  Polarization anomaly.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Some Issues in Charmonium Physics Some Issues in Charmonium Physics K-T Chao Peking University.
Lecture II Factorization Approaches QCDF and PQCD.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Charmless B  VP Decays using Flavor SU(3) Symmetry hep-ph/ C.-W. Chiang, M. Gronau, Z. Luo, J. Rosner, DS Denis Suprun University of Chicago.
Electroweak B Decays T. Yoshikawa ( Nagoya ) Possibility of Large EW Penguin contribution FPCP2004 Oct. 4 – 9, EXCO, Daegu, Korea This talk is based on.
1 A New Physics Study in B  K  & B  K*  Decays National Tsing Hua University, October 23, 2008 Sechul OH ( 吳世哲 ) ( 오세철 ) C.S. Kim, S.O., Y.W. Yoon,
Theories of exclusive B meson decays Hsiang-nan Li Academia Sinica (Taiwan) Presented at Beijing Aug , 2005.
QFD, Weak Interactions Some Weak Interaction basics
Theoretical tools for non-leptonic B decays
The CKM matrix & its parametrizations
Learning  ( 0 ) from B decays Chuan-Hung Chen Department of Physics, National Cheng-Kung University, Tainan, Taiwan  Introduction & Our question  
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
End User's View of Lattice QCD Cheng-Wei Chiang National Central University & Academia Sinica Lattice QCD Journal Club March 9, NTU.
Nita Sinha The Institute of Mathematical Sciences Chennai.
15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University.
Charmless Two-Body B Decays Involving a Tensor Meson Kwei-Chou Yang Chung-Yuan Christian University, Taiwan The 36th International Conference on High Energy.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
DCPV/Rare George W.S. Hou (NTU) Beauty Assisi 1 Direct CP and Rare Decays June 21, 2005 B Physics at Hadronic Machines, Assisi.
Yu-Kuo Hsiao Academia Sinica In collaboration with H.Y. Cheng, C.Q. Geng and Chun-Hung Chen Feb. 26, 2008 Outline: Introduction Formalism Results Summary.
Some Topics in B Physics Y ing L i Y onsei U niversity, K orea Y antai U nviersity, C hina.
1 Quark flavour observables in 331 models in the flavour precision era Quark flavour observables in 331 models in the flavour precision era Fulvia De Fazio.
C.D. LuCKM1  /  3 from Charmless B s Decays Cai-Dian Lü (IHEP, Beijing) Thanks A.Ali, G.Kramer and Li, Wang... Testing Uncertainty of.
C.D. LuMoriond1 Charmless hadronic B s Decays Cai-Dian Lü (IHEP, Beijing) Thanks Ali, Kramer and Li, Shen,Wang The study of hep-ph/
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
Branching Fractions and Direct CP
Direct CP violation in 3-body B decays
Polarization in charmless B VV decays
Selected topics in B physics
Resolving B-CP puzzles in QCD factorization
CP Violation in Charmless 3-body B Decays
Flavor Physics and CP Violation at LHCb
Weak CP Violation in Kaon and B Systems
Hadronic 3-body B decays
Theoretical issues with S in 3-body decays
Presentation transcript:

Flavor, Charm, CP Related Physics PASCOS, Taipei November 22, 2013 Hai-Yang Cheng Academia Sinica, Taipei

2 Outline: Quark and lepton mixing matrices Baryonic B decays Direct CP violation in D decays Direct CP violation in B decays See the talk of Rodrigues (11/21)

3 Quark & lepton mixing matrices

44 CP Violation in Standard Model V CKM is the only source of CPV in flavor-changing process in the SM. Only charged current interactions can change flavor Kobayashi & Maskawa (’72) pointed out that one needs at least six quarks in order to accommodate CPV in SM with one Higgs doublet Physics is independent of a particular parameterization of CKM matrix, but V KM has some disadvantages : Determination of  2 &  3 is not very accurate Some elements have comparable real & imaginary parts 1>>   >>   >>  

5 Maiani (’77) advocated by PDG (’86) as a standard parametrization. However, the coefficient of the imaginary part of V cb and V ts is O(10 -2 ) rather than O(10 -3 ) as s 23  In 1984 Ling-Lie Chau and Wai-Yee Keung proposed a new parametrization The same as V Maiani except for the phases of t & b quarks. The imaginary part is O(10 -3 ). This new CKM (Chau-Keung-Maiani) matrix is adapted by PDG as a standard parametrization since >>   >>   >>   s 13 ~ 10 -3

6 Some simplified parametrizations Wolfenstein (’83) used V cb =0.04  A 2,  0.22 Mixing matrix is expressed in terms of, A ~ 0.8,  and  Imaginary part = A 3  However, this matrix is valid only up to 3 6 Motivated by the boomerang approach of Frampton & He (’10), Qin & Ma have proposed a different parametrization (’10) Wolfenstein parameters A, ,   QM parameters f, h, 

7 Wolfenstein parametrization up to  Wolfenstein parametrization can also be obtained from KM matrix by making rotations: s  s e i , c  c e i , b  b e i( , t  t e -i(  and replacing A, ,  by A’,  ’,  ’ and ’ The original Wolfenstein parametrization is not adequate for the study of CP violation in charm decays, for example. Hence it should be expanded to higher order of

888 Look quite differently from those of V (CK) Wolf

99 Buras et al. (’94): As in any perturbative expansion, high order terms in are not unique in the Wolfenstein parametrization, though the nonuniquess of the high order terms does not change physics Now |V ub | ~ , |V cb | ~  |V ub | ~  |V cb |~ A  Wolfenstein (’83) used |V ub | ~ 0.2 |V cb | ~ A   ~ 0.129,  ~ not order of unity ! We define & of order unity

10 Most of the discrepancies are resolved via the definition of the parameters ,  of order unity Remaining discrepancies can be alleviated through 1.V us = = ’ 2.from V cb  3.from V ub  arXiv: Ahn, HYC, Oh

11 Lepton mixing matrix   = solar mixing angle,   = atmospheric mixing angle,   = reactor mixing angle Pontecorvo, Maki, Nakagawa, Sakata A different parametrization has been studied: Huang et al ;   ~ 19 o,   ~ 46 o,   ~ 29 o are quite different from   ~ 34 o,   ~ 38 o,   ~ 9 o

12 quark: lepton:   ~ 34 o,   ~ 38 o,   ~ 9 o   ~ 13 o,   ~ 2.4 o,   ~ 0.2 o 1>>   >>   >>  

13 Baryonic B Decays B  baryon + antibaryon B  baryon + antibaryon + meson B  baryon + antibaryon + 

14 A baryon pair is allowed in the final state of hadronic B decays. In charm decay, D s + →pn is the only allowed baryonic D decay. Its BR ~ (CLEO)

15 2-body charmless baryonic B decays Belle BaBar Belle CLEO ARGUS CLEO Belle ALEPH DLPHI CLEO Very rare !

16 CZ=Chernyak & Zhitnitsky (’90), CY= Cheng & Yang (’02) CY What is the theory expectation of Br(B 0  pp) ?

17 Talk presented at 7 th Particle Physics Phenomenology Workshop, 2007

18 Br(B 0  pp)= ( )  Br(B s 0  pp)= ( )  LHCb ( ) 3.3  The pQCD calculation of B 0  pp is similar to the pQCD calculation of B→  c p (46 Feynman diagrams) by X.G.He, T.Li, X.Q.Li, Y.M.Wang (’06) LHCb ( ) observed a resonance  (1520) in B -  ppK - decays Br(B -   (1520)p)= (  0.1  0.3)   (1520)  pK - Why is Br(B -   (1520)p) >> Br(B 0  pp) ? first evidence see the talk of Prisciandaro (22C1b)

19 Angular distribution Measurement of angular distributions in dibaryon rest frame will provide further insight of the underlying dynamics SD picture predict a stronger correlation of the meson with the antibaryon than to the baryon in B→B 1 B 2 M B - →pp  - b u -- p p B-B- - u B rest frame p -- p p -- p pp -- p p pp rest frame Belle(’08) (’13)

20 Belle(’04) BaBar(’05) Angular distribution in penguin-dominated B -  ppK - BaBar measured Dalitz plot asymmetry Belle: K - is preferred to move collinearly with p in pp rest frame !  a surprise in correlation SD picture predicts a strong correlation between K - and p ! pp K-K- p p _ - b u u s K-K- p - - u p b s - u u K-K- p p unsolved enigma ! (’13)

21 Angular distribution in B -  p  - b s  p B0B0 - d ++ u - u SD picture: Both  & p picks up energetic s and u quarks, respectively ⇒ on the average, pion has no preference for its correlation with  or p ⇒ a symmetric parabola that opens downward Belle(’07): M.Z. Wang et al. shows a slanted straight line ⇒ another surprise !! Tsai, thesis (’06) pp p _ ++  Correlation enigma occurs in penguin-dominated modes B→ppK,  p  Cannot be explained by SD b→ sg * picture Needs to be checked by LHCb & BaBar Theorists need to work hard !

22 Radiative baryonic B decays At mesonic level, b  s  electroweak penguin transition manifests in B  K * . Can one see the same mechanism in baryonic B decays ? Consider  b pole diagram and apply HQS and static b quark limit to relate the tensor matrix element with  b  form factors  Br(B -  p  )  Br(B -  0  -  ) = 1.2   Br(B -  0 p  )= 2.9  Penguin-induced B -  p  and B -  0  -  should be readily accessible to B factories Br(B -  p  ) = (  0.22)  Br(B -  0 p  ) < 4.6  first observation of b  s  in baryonic B decay Belle [ Lee & Wang et al. PRL 95, (’05) ] HYC,Yang (’02)

23 Extensive studies of baryonic B decays in Taiwan both experimentally and theoretically B - →ppK - : first observation of charmless baryonic B decay (’01) B→pp(K,K *,  ) →  p( ,K) →  K B→pp, , p  stringent limits) B→p  : first observation of b→s  penguin in baryonic B decays (’04) Expt. Theory Chen, Chua, Geng, He, Hou, Hsiao, Tsai, Yang, HYC,… Publication after 2000: (hep-ph) , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , PRD(05,not on hep-ph), , , , , , , , , , Belle group at NTU (Min-Zu Wang,…) Taiwan contributes to 86% of theory papers Publication after 2002: 15 papers (first author) so far: 7PRL, 2PLB, 6PRD; 2 in preparation

24 Direct CP violation in charm decays

25 Amp = V* cd V ud (tree + penguin) + V* cs V us (tree’ + penguin) DCPV is expected to be the order of  !  : strong phase DCPV requires nontrival strong and weak phase difference In SM, DCPV occurs only in singly Cabibbo-suppressed decays. It is expected to be very small in charm sector within SM Penguin is needed in order to produce DCPV at tree & loop level No CP violation in D decays if they proceed only through tree diagrams CP violation in charm decays

26 Experiment Time-dependent CP asymmetry Time-integrated asymmetry LHCb: (11/14/2011) 0.92 fb -1 based on 60% of 2011 data  A CP  A CP (D 0  K + K - ) – A CP (D 0      ) = - (0.82  0.21  0.11)%  3.5  effect: first evidence of CPV in charm sector Belle: (ICHEP2012) 540 fb -1  A CP  - (0.87  0.41  0.06)% CDF: (2/29/2012) 9.7 fb -1  A CP = A raw (K + K - ) - A raw (    - )= - (2.33  0.14)% - (-1.71  0.15)% = - (0.62  0.21  0.10)% 2.7  effect see Mohanty’s talk (11/25)

27 World averages of LHCb + CDF + BaBar + Belle in 2012  a CP dir = -(0.678  0.147)%, 4.6  effect a CP ind = -(0.027  0.163)% Theory estimate is much smaller than the expt’l measurement of |  a CP dir |  0.7%  New physics ?

28 Isidori, Kamenik, Ligeti, Perez [ ] Brod, Kagan, Zupan [ ] Wang, Zhu [ ] Rozanov, Vysotsky [ ] Hochberg, Nir [ ] Pirtskhalava, Uttayarat [ ] Cheng, Chiang [ ] Bhattacharya, Gronau, Rosner [ ] Chang, Du, Liu, Lu, Yang [ ] Giudice, Isidori, Paradisi [ ] Altmannshofer, Primulando, C. Yu, F. Yu [ ] Chen, Geng, Wang [ ] Feldmann, Nandi, Soni [ ] Li, Lu, Yu [ ] Franco, Mishima, Silvestrini [ ] Brod, Grossman, Kagan, Zupan [ ] Hiller, Hochberg, Nir [ ] Grossman, Kagan, Zupan [ ] Cheng, Chiang [ ] Chen, Geng, Wang [ ] Delaunay, Kamenik, Perez, Randall [ ] Da Rold, Delaunay, Grojean, Perez [ ] Lyon, Zwicky [ ] Atwood, Soni [ ] Hiller, Jung, Schacht [ ] Delepine, Faisel, Ramirez [ ] Li, Lu, Qin, Yu [ ] Buccella, Lusignoli, Pugliese, Santorelli [ ] 28 theory papers !

29 All two-body hadronic decays of heavy mesons can be expressed in terms of several distinct topological diagrams [Chau (’80); Chau, HYC(’86)] All quark graphs are topological and meant to have all strong interactions encoded and hence they are not Feynman graphs. And SU(3) flavor symmetry is assumed. Diagrammatic Approach T (tree) C (color-suppressed) E (W-exchange) A (W-annihilation) P, P c EW S, P EW PE, PE EW PA, PA EW HYC, Oh (’11)

For Cabibbo-allowed D →PP decays (in units of GeV) T = 3.14 ± 0.06 (taken to be real) C = (2.61 ± 0.08) exp[i(-152±1) o ] E = ( ) exp[i(122±2) o ] A= ( ) exp[i( ) o ] Rosner (’99) Wu, Zhong, Zhou (’04) Bhattacharya, Rosner (’08,’10) HYC, Chiang (’10) T C A E 30  Phase between C & T ~ 150 o  W-exchange E is sizable with a large phase  importance of 1/m c power corrections  W-annihilaton A is smaller than E and almost perpendicular to E CLEO (’10) Cabibbo-allowed decays The great merit & strong point of this approach  magnitude and strong phase of each topological tree amplitude are determined   =0.39/d.o.f

31 Tree-level direct CP violation DCPV can occur even at tree level A(D s +  K 0   ) = d (T + P d + PE d ) + s (A + P s + PE s ), p =V* cp V up DCPV in D s +  K 0   arises from interference between T & A  Larger DCPV at tree level occurs in decay modes with interference between T & C (e.g. D s +    ) or C & E (e.g. D 0     ) DCPV at tree level can be reliably estimated in diagrammatic approach as magnitude & phase of tree amplitudes can be extracted from data

32 Decay theory Decay theory D0 D0  0 D0 D0  0 D0 D0  0 D0 D0  0 D 0    0.82 D0 D0  0 D 0    ’ D 0  K + K *- 0 D 0  D 0  K - K *+ 0 D 0  ’ D 0  K 0 K * D 0  K + K - 0 D 0  K 0 K * D 0     D0 D0  0 D +     0 D 0    0 D +    0.36 D 0   0.19 D+ ’D+ ’ D0 ’D0 ’ D +  K + K D 0  0 D s +  + K D 0    Ds+ K+Ds+ K D0 ’D0 ’ 0.59 D s +  K +  D s +  K +  ’ > a dir (tree) > Largest tree-level DCPV PP: D 0  K 0 K 0, VP: D 0   ’  Tree-level DCPV a CP (tree) in units of per mille a CP (tree) vanishes in D 0     , K + K -

33 Short-distance penguin contributions are very small. How about power corrections to QCD penguin ? SD weak penguin annihilation is also very small; typically, PE / T  0.04 and PA / T  Large LD contribution to PE can arise from D 0  K + K - followed by a resonantlike final- state rescattering It is reasonable to assume PE ~ E, PE P ~ E P, PE V ~ E V Power corrections to P from PE via final-state rescattering cannot be larger than T

34 Decay a CP dir Decay a CP dir D0 +-D0 +  0.04 D 0     D0 00D0 0  0.04 D 0     D0 0D0 0 0.06  0.04 D0  D0   D0 0’D0 0’ 0.01  0.02 D 0  K + K * D 0     0.02 D 0  K - K * D 0   ’ 0.53   0.02 D 0  K 0 K * D 0  K + K   0.02 D 0  K 0 K * D 0  K 0 K   0.01 D0 D0  0.37 D+ + D+ +   0.06 D0 D0  0 D+ +’D+ +’ 0.34  0.07 D 0   0.50 D +  K + K  0.04 D 0  ’  Ds+ +K0Ds+ +K  0.03 D 0  0 Ds+ 0K+Ds+ 0K  0.10 D 0   D s +  K +   0.05 D 0  ’   0.20 D s +  K +  ’  0.12 a CP dir (10 -3 )  a CP dir =  0.004% (I)  0.004% (II) about 3.3  away from -(0.678  0.147)% Even for PE  T  a CP dir = -0.27%, an upper bound in SM A similar result  a CP dir =-0.128% obtained by Li, Lu, Yu see Hsiang-nan Li’s talk (11/25) If  a CP dir ~ -0.68%, it is definitely a new physics effect !

35 Attempts for SM interpretation Golden, Grinstein (’89): hadronic matrix elements enhanced as in  I=1/2 rule. However, D   data do not show large  I=1/2 enhancement over  I=3/2 one. Moreover, |A 0 /A 2 |=2.5 in D decays is dominated by tree amplitudes. Brod, Kagan, Zupan: PE and PA amplitudes considered Pirtskhalava, Uttayarat : SU(3) breaking with hadronic m.e. enhanced Bhattacharya, Gronau, Rosner : P b enhanced by unforeseen QCD effects Feldmann, Nandi, Soni : U-spin breaking with hadronic m.e. enhanced Brod, Grossman, Kagan, Zupan: penguin enhanced Franco, Mishima, Silvestrini: marginally accommodated We have argued that power corrections to P from PE via final-state rescattering cannot be larger than T

36  A CP = - (0.34  0.15  0.10)% D * tagged  A CP = (0.49  0.30  0.14)% B  D 0  X, muon tagged - (0.15  0.16)% combination LHCb in 2013: World average:  a CP dir = -(0.333  0.120)%, 2.8  a CP ind = (0.015  0.052)% Recall that  a CP dir = -(0.678  0.147)%, 4.6  in 2012 ! It appears that SM always wins ! See D. Tonelli’s talk (11/25)

37 Direct CP violation in charmless B decays

38 Direct CP asymmetries (2-body)    A CP (K -   ) – A CP (K -   ) Bu/Bd Bu/Bd K -       K -  K *0  K* -   K - f 2 (1270)  K -       A CP (%) -8.2    8 19     4  S 13.7  5.8  4.6  3.8  3.6  3.4  3.3  Bu/BdBu/Bd     K -   K* -  K -       K -          *  A CP (%) -14  5 10  431    9 20  1143   645  25 S 2.8  2.5  2.4  1.9  1.8    12.2   B s K +  - A CP (%) 26  4 S 7.2  LHCb K  puzzle:  A K  is naively expected to vanish

39 A CP (B -  K -  ) BaBar Belle CDF Average A CP (%) 12.8  4.4   12  5 -7   4.2 QCDF pQCD SCET A CP (%) 0.6   0 LHCb observed CP violation in B -  K - K + K - but not around  resonance LHCb ( ) obtained A CP = (2.2  2.1  0.9)% Expt: Theory: arXiv:

40 Bu/Bd Bu/Bd K -       K -  K *0  K* -    K -       A CP (%) -8.2    8 19   6 37   4  S 13.7  5.8  4.6  3.8  3.4  3.3  m b         B s K +  - A CP (%) 26  4 S 7.2  m b   In heavy quark limit, decay amplitude is factorizable, expressed in terms of form factors and decay constants. See Beneke & Neubert (’03) for m b  results Bu/BdBu/Bd  -   K -  0 K* - K -  0  +  + K -  0  0  -  +  K* 0 A CP (%) -14  5 10  431    9 20  1143   645  25 S 2.8  2.5  2.4  1.9  1.8  m b           sign

41 A(B 0  K -  + )  u a 1 + c (a 4 c +r  a 6 c ) Theory Expt Br 13.1x10 -6 (19.55  0.54)x10 -6 A CP  Im  4 c   wrong sign for A CP penguin annihilation charming penguin, FSI penguin annihilation 1/m b corrections 4c4c

42 New CP puzzles in QCDF Penguin annihilation solves CP puzzles for K -  ,    ,…, but in the meantime introduces new CP puzzles for K - , K *0 , … Also true in SCET with penguin annihilation replaced by charming penguin Bu/Bd Bu/Bd K -       K -  K *0  K* -    K -       A CP (%) -8.2    819   6 37   4  S 13.7  5.8  4.6  3.8  3.4  3.3  m b         PA       12.2    3.3  (  1.9) Bu/BdBu/Bd  -   K -  0 K* - K -  0  +  + K -  0  0  -  +  K* 0 A CP (%) -14  5 10  431    9 20  1143   645  25 S 2.8  2.5  2.4  1.9  1.8  m b           PA         

43 All “problematic” modes receive contributions from u C+ c P EW P EW  (-a 7 +a 9 ), P c EW  (a 10 +r  a 8 ), u =V ub V* us, c =V cb V* cs  A K  puzzle can be resolved by having a large complex C (C/T  0.5e –i55 ) or a large complex P EW or the combination  A K   0 if C, P EW, A are negligible   A K  puzzle Large complex C Charng, Li, Mishima; Kim, Oh, Yu; Gronau, Rosner; … Large complex P EW needs New Physics for new strong & weak phases Yoshikawa; Buras et al.; Baek, London; G. Hou et al.; Soni et al.; Khalil et al;… o

44 The two distinct scenarios can be tested in tree-dominated modes where ’ c P EW << ’ u C. CP puzzles of   ,     & large rates of    ,     cannot be explained by a large complex P EW     puzzle: A CP =(43  24)%, Br = (1.91  0.22)    12.2    3.3  (  1.9)  Bu/Bd Bu/Bd K -       K -  K *0  K* -    K -       A CP (%) -8.2    8 19   6 37   4  S 13.7  5.8  4.6  3.8  3.4  3.3  m b         PA     large complex a 2   Bu/BdBu/Bd  -   K -  0 K* - K -  0  +  + K -  0  0  -  +  K* 0 A CP (%) -14  5 10  431    9 20  1143   645  25 S 2.8  2.5  2.4  1.9  1.8  m b           PA          large complex a 2         

45 Direct CP asymmetries (3-body) LHCb found evidence of inclusive CP asymmetry in B -       , K + K - K -, K + K -   BaBar(%) Belle(%) LHCb(%) Average       3.2   2.1   2.2 K + K - K   0.9   1.0 K -     2.8  2.0   2.6   0.8   1.0 K + K -   0  10   4.0   4.1 Large asymmetries observed in localized regions of p.s. A CP (KK  ) =    for m KK 2 <1.5 GeV 2 A CP (KKK) =    for 1.2< m KK, low 2 <2.0 GeV 2, m KK, high 2 <15 GeV 2 A CP (  ) = for m , low 2 15 GeV 2 A CP (K  ) =    for 0.08< m , low 2 <0.66 GeV 2, m K  2 <15 GeV 2

46 Correlation: A CP (K - K + K - )  – A CP (K -     ), A CP (   K + K - )  – A CP (       ) Relative signs between CP asymmetries of K - K + K - &      ,   K + K - & K -     are consistent with U-spin prediction. It has been conjectured that CPT theorem & final-state rescattering of      K + K - may play important roles Zhang, Guo, Yang [ ] Bhattacharya, Gronau, Rosner [ ] Xu, Li, He [ ] Bediaga, Frederico, Lourenco [ ] Cheng, Chua [ ] Zhang, Guo, Yang [ ] Lesniak, Zenczykowski [ ] Xu, Li, He [ ]

47 Conclusion of this section  CP asymmetries are the ideal places to discriminate between different models.  In QCDF one needs two 1/m b power corrections (one to penguin annihilation, one to color-suppressed tree amplitude) to explain decay rates and resolve CP puzzles  Can we understand the correlation ? A CP (K - K + K - )  – A CP (K -     ), A CP (   K + K - )  – A CP (       )

48 Conclusions To expand Wolfenstein parametrization to higher order of, it is important to use  &  parameters order of unity. First evidence of charmless baryonic B decays: time for updated theory studies. Correlation puzzle in penguin- dominated decays needs to be resolved. DCPV in charm decays is studied in the diagrammatic approach. It can be reliably estimated at tree level. Our prediction is  a CP = -(0.139  0.004)%

49 Backup Slides

50  : strong phase To accommodate  a CP one needs P  T~ 3 for maximal strong phase, while it is naively expected to be of order  s /  Bhattacharya, Gronau, Rosner Brod, Grossman, Kagan, Zupan Can penguin be enhanced by some nonperturbative effects or unforeseen QCD effects ? We have argued that power corrections to P from PE via final-state rescattering cannot be larger than T

51 In D   decays In absence of penguin contribution & SU(3) breaking, this ratio is predicted to be 3.8, larger than the expt’l result. This means  P should contribute destructively to A 0 /A 2. In kaon decays, the predicted ratio due to tree amplitudes is too small compared to experiment  large enhancement of penguin matrix element. ( 22.4  0.1 in K 

52 Before LHCb: Grossman, Kagan, Nir (’07) Bigi, Paul, Recksiegel (’11) New Physics interpretation FCNC Z FCNC Z’ (a leptophobic massive gauge boson) 2 Higgs-doublet model: charged Higgs Color-singlet scalar Color-sextet scalar (diquark scalar) Color-octet scalar 4 th generation Wang, Zhu; Altmannshofer, Primulando, C. Yu, F. Yu Hochberg, Nir Altmannshofer et al; Chen, Geng, Wang Rozanov, Vysotsky; Feldmann, Nandi, Soni Tree level (applied to some of SCS modes) Giudice, Isidori, Paradisi; Altmannshofer, Primulando, C. Yu, F. Yu Model-independent analysis of NP effects Isidori, Kamenik, Ligeti, Perez Altmannshofer et al. After LHCb :

53 Large  C=1 chromomagnetic operator with large imaginary coefficient is least constrained by low-energy data and can accommodate large  A CP. is enhanced by O(v/m c ). However, D 0 -D 0 mixing induced by O 8g is suppressed by O(m c 2 /v 2 ). Need NP to enhance c 8g by O(v/m c ) NP models are highly constrained from D-D mixing, K-K mixing,  ’/ ,… Tree-level models are either ruled out or in tension with other experiments. Giudice, Isidori, Paradisi Grossman, Kagan, Nir Giudice, Isidori, Paradisi Loop level (applied to all SCS modes) Hiller, Hochberg, Nir Delaunay, Kamenik, Perez, Randall It can be realized in SUSY models gluino-squark loops new sources of flavor violation from disoriented A terms, split families trilinear scalar coupling RS flavor anarchy warped extra dimension models