Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Horizontal noncontact FMT imaging system. (a) The FMT setup is illustrated, where.

Slides:



Advertisements
Similar presentations
Fluorescence Diffuse Optical Tomography (FDOT) Our group presented three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse.
Advertisements

Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. Rendered design of the 4M device that illustrates optical components mounted on.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) A stack of representative three-dimensional images of 80-nm AuNPs embedded.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of the setup: (a) the multiphoton laser path and (b) the laser path.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Confocal to multiphoton conversion. (a) Schematic of system adaptation. The near.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. A high-resolution photoacoustic scanner consisting of a doubled YAG laser, an OPO,
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. The Raman spectra of Er,Yb:KLaP glass samples. The Raman frequency shift of the.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. Optical configuration. The function of a BFP imaging lens, added externally to.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical image of fore and hind wings from a male S. charonda butterfly at different.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup for angular and spectrally resolved scattering microscopy. The.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Drawing of the distal face of the fiber ferrule. The OIR source fiber is located.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Lens L focuses 488 or 514nm of light from an argon-ion laser at the BFP of a 1.45.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Scheme of the two-wavelength CO2 laser setup. Figure Legend: From: Two-wavelength.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Schematic setup of the DS-VHI system. Multicolor fluorescent planes within a tissue.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Image of rat tail tissue taken while illuminated with unpolarized 940-nm light collected.
Date of download: 6/18/2016 Copyright © 2016 SPIE. All rights reserved. The relative fluorescent lifetime algorithm introduces both hardware and software.
Date of download: 6/20/2016 Copyright © 2016 SPIE. All rights reserved. CT-analog pharmacokinetic DFT: (a) sketch of phantom and the configuration of the.
Date of download: 6/20/2016 Copyright © 2016 SPIE. All rights reserved. Scheme depicting our high resolution hyperspectral camera principle of operation.
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. Fluorescence excitation (thick) and emission (thin lines) spectra for (a) the QDs.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representation of the near-infrared (NIR) structured illumination instrument,
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Scheme of mitochondrial retrograde signaling pathways as proposed by Ref. 4. This.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Index-matching effect. Matching the index of refraction of the bead with the solution.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Photographs of exposed femoral bone surfaces and surrounding tissue prepared for.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Prismless confocal total internal reflection (CTIR) microscope. 532-nm light is.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Geometry of the simulations, as carried out in this paper. The setup is infinite.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical setup of the experiment. L1: the fs laser at 1554nm. L2: the laser.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Structure of a well-characterized 2PA fluorophore and its photophysical properties:
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the interventional multispectral photoacoustic imaging system.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Scheme of the femtosecond laser nanosurgery microscope with quasi-Bessel beam.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Overview (a), images of the λ-stack (b) and spectra of ROI 1 and 2 (c) of a 24.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Temporal profiles of a laser pulse at 1064, 532, and 355nm measured with a 1-ns.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Comparison of the SERS spectrum from the S440 reporter molecule (inset) and.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. The absorption spectra of oxy- and deoxyhemoglobin relative to emission spectra.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup. Figure Legend: From: Photoacoustic and ultrasound imaging of.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Transmission as a function of wavelength for a 1-m pathlength, a temperature of.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Intracellular fluorescence intensity reflecting the intracellular uptake of 5-aminolaevulinic.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Sample CP-A and CP-B cells labeled with fluorescent protoporphyrin IX (PpIX) in.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup. (1) Nd:YVO4 laser. (2) Beam expander. (3)
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Characterization of reversibly switchable photo-imprint microscopy (rsPIM). (a)
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. A series of thermal images of (a) normal and (b) dry eye. The time interval between.
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. Image collection and region of interest assignment. Four channels were collected.
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the luminescence acquisition setup and the geometry of the flat.
Date of download: 6/29/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the time-resolved (TR) system. Light emitted by each diode laser.
Date of download: 6/29/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the phantom. The rod with an embedded black polyvinyl chloride (PVC)
Date of download: 6/29/2016 Copyright © 2016 SPIE. All rights reserved. Molecular structure of tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) [Ru(Ph2phen)3]2+
Date of download: 7/1/2016 Copyright © 2016 SPIE. All rights reserved. Summary of MFI image types. (a) Plot of 18 image types collected by system. Six.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Subdivision of the retina in two treatment zones. The treated zones, I and II, are.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Diagrams demonstrating shadow imaging. (a) The position of the shadow moves as the.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Simulation of the ablation cross section by a sequence of laser pulses with an ideal.
Date of download: 7/3/2016 Copyright © 2016 SPIE. All rights reserved. Illustration of the schematic for the photon budget analysis. (a) Excitation path.
Date of download: 7/5/2016 Copyright © 2016 SPIE. All rights reserved. Spatial light modulator-two-photon microscope (SLM-2PM) scheme: (1) Ti:Sa laser.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. Optical setup and schematic description of the acquisition. (a) Optical setup inside.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. The spectral overlap of Cerulean or mTFP with Venus is compared. The excitation.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. Schematics of typical fluorescence imaging system and its key parameters. A typical.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. Description and components of the AFIT rotating prism CTI instrument. Figure Legend:
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representations of the HP1α and C/EBPα proteins indicating the relative.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Through-the-objective TIRF creates the evanescent field on the aqueous side of the.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Principle and method for angular domain fluorescent imaging. (a) Angular domain.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Photo of measurement boat and unit. Figure Legend: From: Development of shape measurement.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Experimental layout. (a) Schematic of phantom showing the cross-sectional and overhead.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. (a) Diagram of FLaME experimental imaging setup. All components were controlled.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Layout of the KECK 3D fusion multimodal microscope. Only modalities and functions.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. (a) SPW excitation at the tapered fiber tip. The fiber tip is coated with a thin.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Determination of repeatability of VCSEL sensor using in vitro, phantom, and in.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Quantitative analysis of immunoblots using light-sensitive film. (a) A densitometry.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Schematics of the 3-D printed probe for tissue collagen differentiation. (a) The.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. (a) A pulsatile flow bioreactor for in vitro incubation of bioengineered carotid.
From: Metacontrast masking within and between visual channels: Effects of orientation and spatial frequency contrasts Journal of Vision. 2010;10(6):12.
Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two- Photon Laser Scanning Microscopy  Jun B. Ding, Kevin T. Takasaki, Bernardo.
Polarized Fluorescence Resonance Energy Transfer Microscopy
Presentation transcript:

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Horizontal noncontact FMT imaging system. (a) The FMT setup is illustrated, where the argon-ion source directs the beam into the FMT chamber via two fixed mirrors and into a scan cube that directs the beam via galvo-mirrors onto different user-selected source positions on the sample. The laser source can be directed onto the sample in reflection or transmission geometry by the use of a sliding mirror. Light is collected by a CCD camera, where wavelength is selected by the use of bandpass filters placed on a filter wheel. The data are recorded by a PC. The FMT imager was used to image a phantom containing a glass capillary tube filled with 10-μM CFSE. (b) 3-D reconstructed image of the capillary tube was obtained with 100 iterations; the tube was clearly visible and geometrically correctly reconstructed. (c) The x−y plane showed the reconstructed tube in line with its true location, visible in the background image, and 2 mm below the surface. (d) The y−z plane and (e) x−z plane images demonstrated that the FMT software correctly reconstructed the tube as a cylindrical object with a homogeneous fluorescent signal. Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. FMT calibration. FMT-FY was calculated by converting CFSE and Atto590 concentrations into absorbance values. FMT intensity values were plotted against measured absorbance value (A= *c*l) for four concentrations of (a) CFSE and (b) Atto590. The points were fitted to a linear regression model, and the slope and intercept points were used to calculate the relative FMT-FY value. Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Quantification of FMT fluorescent signal in reflection and transmission modalities at different wavelengths. Increasing concentrations of (a) CFSE and (b) Atto590 were measured; fluorescence was detected using the FMT imager in reflection (black) and transmission (red) modalities. The mean intensity values for each experiment were then plotted against the known concentration values and fitted to a linear model. R2>0.98 for all fits (Table 1). Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Fluorescent protein emission comparison. A 24-well cell culture plate, each containing 1×106 cells expressing EGFP, SGFP, SYFP, Katushka, and Cardinal, was imaged using the FMT imager with or without addition of 12% heparinated blood. Excitation was performed using 488- and 514-nm laser lines, and fluorescence was recorded with 510/10-, 540/40-, 593/40-, and 615/90-nm filters. (a) Intensity values for each fluorophore were recorded with the optimal filter combination. The intensity values for red emitters are expanded in (b); SGFPRed indicates SGFP-expressing cells detected with the red filter for comparative purposes. The intensity values were normalized to take into account the fluorophore-specific excitation/emission efficiency. The measured normalized values (Norm) and calculated potential values (Pot) are shown for the (c) green and (d) red channels. Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Subcutaneous localization and FMT rendering of the inguinal LN of a CD2/DsRed mouse. (a) Fluorescence tomography raw data (514 nm excitation; 615/90 nm emission), and (b) FMT 3-D reconstruction shows how the rendering process correctly localizes the shape and location of the LN. Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO

Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. FMT localization and rendering of the mesenteric LNs of a CD2/DsRed mouse. 2-D homogeneous illumination images of the ventral area of (a) a CD2/DsRed and (c) a control mouse show the spatial spread of fluorescent and autofluorescent objects. The area delimited by the red boxes represents the area selected for the 3-D FMT rendering (b and d) for each mouse. The difference in anatomical location of nontarget autofluorescent objects illustrates the challenges faced in the FMT reconstructions. Figure Legend: From: Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography J. Biomed. Opt. 2016;21(2): doi: /1.JBO