Opportunities from the Intensity Frontier to the Energy Frontier J.P.Delahaye/SLAC.

Slides:



Advertisements
Similar presentations
The US 5 Year Muon Acceleration R&D Program To Boldly Go… MICE Collaboration Meeting Harbin January, 2009.
Advertisements

Precision Neutrino Oscillation Measurements & the Neutrino Factory Scoping Study for a Future Accelerator Neutrino Complex – Discussion Meeting Steve Geer,
ISS meeting, (1) R. Garoby (for the SPL study group) SPL-based Proton Driver for Facilities SPL-based Proton Driver for Facilities at CERN:
U.S. Department of Energy Brookhaven Science Associates BNL’s Role in High Energy Physics Thomas B.W. Kirk Associate Director for High Energy and Nuclear.
CERN First Considerations to implement nuSTORM on the CERN site “North Area Neutrino Hub” E.Wildner, CERN Wednesday, March 27, 2013Elena Wildner,
European Strategy for Particle Physics 2013 Preparatory group->Strategy group Individual town meetings Town meeting in Krakow: september 2012 Drafting.
25/10/2007M. Dracos1 EURO The European Design Study for a high intensity neutrino oscillation facility (Rob Edgecock, Mats Lindroos, Marcos Dracos)
International Muon Ionization Cooling Experiment Edward McKigney Imperial College RAL March 25, 2002 Physics Motivation and Cooling Introduction.
Catalina Island Meeting May, Proton Drivers for Neutrino Factories: The CERN Approach Presented by B. Autin, CERN.
Alain Blondel Neutrino Factory scenarios I will endeavour to address some principle design issues related to the physics use of high intensity muon beams.
MUON COLLIDER: R&D Status & Opportunities for Participation FNAL, February 24, 2011   1.Motivation & OverviewSteve Geer 2.Accelerator R&DVladimir.
Future Accelerators at the energy frontier Peter Hansen february 2010 University of Copenhagen.
Round-table: Discussion on Future Machines. With the discovery of the Higgs Boson Self-consistent model (SM) accounting for all Particle Physics phenomena.
F Project X Overview Dave McGinnis October 12, 2007.
Front-End Design Overview Diktys Stratakis Brookhaven National Laboratory February 19, 2014 D. Stratakis | DOE Review of MAP (FNAL, February 19-20, 2014)1.
Fermilab Neutrino Program Jim Strait Neutrino Discussion at CERN 26 November 2013.
1 Tunnel implementations (laser straight) Central Injector complex.
R.G. 7/09/20101 Options for neutrinos. R.G. 7/09/20102 Conventional beam from the SPS (1/3) Neutrinos using the SPS Nominal CNGS 732 km baseline from.
Report from Fermilab Presentation to ICFA Symposium Daegu, Korea September 2005 Pier Oddone.
Staging of a Neutrino Factory (and beyond…) Mark Palmer Director, US Muon Accelerator Program NuFACT 2014, Glasgow, August 25-30, 2014 NUFACT2014 XVIth.
An Integrated Intensity Frontier Strategy Steve Holmes & Bob Tschirhart LBNE Reconfiguration Workshop April 25, 2012.
John Womersley Welcome Director of Particle Physics, CCLRC International Scoping Study Meeting, RAL April 2006.
Mu2e, August 15, 2007 E Prebys 1 The Steering Group and mu2e Eric Prebys.
PIP-II: Why a new accelerator? Paul Derwent Fermilab Community Advisory Board 23 July 2015.
Alain Blondel -- After the ISS -- What did ISS achieve? 1. Established a « baseline » for the accelerator study 2. Rejuvenated simulation and study of.
Proton Source & Site Layout Keith Gollwitzer Accelerator Division Fermi National Accelerator Laboratory Muon Accelerator Program Review Fermilab, August.
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
International Design Study for a Neutrino Factory in the 5 Year Plan A. Bross NFMCC CM January 15, A. Bross NFMCC CM January 15, 2009.
Fermilab: Prospects and Plans Giorgio Apollinari Fermilab New Opportunities in Physics May 10-13, 2009.
News Y2K June 25, Summary of June 12 Face-to-Face Meeting.
Glion Colloquium / June Accelerating Science and Innovation R.-D. Heuer, CERN HL-LHC, Aix-les-Bains, 1 Oct ECFA HL-LHC Experiments Workshop.
Fermilab: Present and Future Young-Kee Kim Data Preservation Workshop May 16, 2011.
F A Fermilab Roadmap Dave McGinnis May 28, f Fermilab Roadmap - McGinnis Timelines  Divide the road map into three parallel paths  ILC - Energy.
Status of Project X Keith Gollwitzer Accelerator Division Fermilab MAP Winter Meeting - March 1, 2011.
Proton Driver Design Keith Gollwitzer Fermilab February 19, 2014.
EU accelerator contributions to the IDS … R. Garoby ISS meeting RAL 28/04/2006.
Steering Group Meeting 10:30 – 12:30 am CDT Monday, July 23, 2007 Y2K.
Muon Accelerators for Particle Physics Working Group Summary Conveners: Jaroslaw Pasternak Imperial College/RAL STFC Mark Palmer Fermilab Proton Accelerators.
ICHEP Conference Amsterdam 31st International Conference on High Energy Physics 24  31 July 2002 Gail G. Hanson University of California, Riverside For.
Proton Driver Keith Gollwitzer Accelerator Division Fermilab MAP Collaboration Meeting June 20, 2013.
STORM and MAP: R&D Towards World-Leading Intensity and Energy Frontier Physics Capabilities STORM Proposal Workshop Virginia Tech Mark Palmer April 14,
Fermilab SRF Linac Development Steve Holmes Workshop on High Intensity Proton Accelerators October 19, 2009.
U.S. Plans for High Power Proton Drivers Steve Holmes Fermilab Workshop on Physics with a Multi-MW Proton Source CERN May 25, 2004.
Neutrinos from Stored Muons STORM physics with a μ storage ring.
Project X Research Program R. Tschirhart Project X Machine Advisory Committee March 18-19, 2013.
Intensity Frontier Physics with a Mega-Watt Proton Source R. Tschirhart Fermilab Science & Technology Review November
The Fermilab Roadmap, Project X, and Muon Facilities Steve Holmes NFMCC Meeting March 17, 2008.
Ionization Cooling for Muon Accelerators Prepared by Robert Ryne Presented by Jean-Pierre Delahaye MICE Optics Review Jan, 2016 RAL.
Fermilab: Introduction Young-Kee Kim DOE KA12 (Electron Research)Review June 22-23, 2010.
Muon Accelerator Program: Overview & Directions Mark Palmer June 19, 2013.
Science Requirements and Instrumentation for Future Neutrino Experiments Gina Rameika, Fermilab Instrumentation Frontier Community Planning January 9 –
CPM 2012, Fermilab D. MacFarlane & N. Holtkamp The Snowmass process and SLAC plans for HEP.
Lucio Rossi The High Luminosity LHC Project Distinguished Lecturer 2013.
DOE Mini-Review Summary and Management Updates Mark Palmer Fermilab March 15, 2013.
Research and development toward a future Muon Collider Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of Muon Accelerator Program Draft.
Steve Holmes DNP Meeting/Santa Fe November 6, 2010 Project X: A Multi-MW Proton Source at Fermilab.
Comments on the February DOE Review
UK Neutrino Factory Conceptual Design
A Muon-based Accelerator Staging Scenario (MASS)
CLIC work program and milestones
Future Muon Colliders: A Perspective
The Accelerator Complex from the International Design Study
Neutrino beams from the decay of muons
nuSTORM: Neutrinos from STORed Muons
Higgs Physics at the Muon Collider
Future physics at nuSTORM
Superbeams with SPL at CERN
Snowmass on the Mississippi
WG3 – Accelerator Physics Plans and Questions
Optimization of JLEIC Integrated Luminosity Without On-Energy Cooling*
Presentation transcript:

Opportunities from the Intensity Frontier to the Energy Frontier J.P.Delahaye/SLAC

Trends of HEP facilities Towards Luminosity frontierTowards Energy frontier Hadrons X10 /15y Hadrons X10 /27y Leptons X10 /17y Leptons X10 /33y X10 / 8.5y Luminosity factories Energy frontier 2CSS2013 (August 04, 2013) J.P.Delahaye

A large number of Projects J.P.Delahaye CSS2013 (August 04, 2013) 3 Energy FrontierIntensity Frontier Hadrons B Factory Leptons Protons E-/Hadrons Ions M.Lindroos European Strategy Krakow Sept, 2012 Hadrons

Ambitious and Challenging Projects Particle Physics very demanding –New territories beyond present energy and intensity frontiers Fascinating projects but not easy and cheap – Increasing amount of resources (M&S) and time Aggressive R&D – Breakthrough on novel technologies – Validated in ambitious test facilities – Performance optimization, Cost and Power mitigation Global approach – From R&D to construction and exploitation Particle Physics Projects approval (very) limited – Realistic landscape J.P.Delahaye CSS2013 (August 04, 2013)4

J.P.Delahaye CSS2013 (August 04, 2013)5 CERN, a success story Staged approach Multi-purpose

Principles of an ideal scenario Series of STAGED facilities –physics interest at each stage –Technology with increasing complexity progressively developed and validated Possibly MULTIPURPOSE –maximizing supported physics community and funding! Affordable step (<1 B$) from one facility to next –Stage built-on previous stage with additional facilities Taking advantage of existing facilities –synergy between present and future program J.P.Delahaye CSS2013 (August 04, 2013)6 Intensity + Energy = 416 M$ = 54%HEP J.Siegrist/DOE

Staged approach of Lepton Colliders projects at the Energy Frontier 7 J.P.Delahaye CSS2013 (August 04, 2013) HIGGS

Electron beam driver of HEP facility for High Intensity applications? Multi-MW Electron Beam Driver Multi-MW Electron Beam Driver J.P.Delahaye CSS2013 (August 04, 2013)8 Main Beam Generation Complex ParametersUnitCLICPWFA PowerMW Beam energyGeV Mean CurrentmA Pulsed currentmA Pulse length ss 60CW Rep. frequencyHz100CW TechnologyGHzNC 1.0SC 1.3 CLIC 500 GeV PWFA 500 GeV

Superconducting Proton Linac (SPL) study as possible(?) CERN Neutrino Factory driver as LHC injector upgrade J.P.Delahaye CSS2013 (August 04, 2013)9 Low power option (LP-SPL) possibly used in CERN injector complex to LHC in replacement of ageing Booster Possible benefits: Reduced number of facilities in the chain Reduced space charge effects Brighter beam for LHC R.Garoby

July 30, 2013 Community Summer Study 2013 (CSS2013) - University of Minnesota10 Unique opportunity of Muon based accelerators to enable facilities at both High Energy and High Intensity Frontiers at High Intensity Frontier at High Energy Frontier

J.P.Delahaye 11 Muon Accelerators Staging Study (MASS) Physics interest at each stage Intensity Frontier Sterile cross sections Precision Physics CP violation Energy Frontier Higgs properties Direct mass&width Beyond Standard Model

Muon based facilities in FNAL context Taking advantage of and leveraging FNAL future projects: –NuSTORM, ProjectX, LBNE NuSTORM an ideal start facility and an asset for MAP: –Build-up experience of muon based facilities –As muon source (10 10 /pulse) for R&D platform ProjectX as proton driver –ProjectX phase 2 with 3 GeV for an early and realistic start (beam power, target…..) –Upgradable to 8 GeV of ProjectX phase4 when available Sanford Underground Research Facility (SURF) as location of long distance detector of a Neutrino Factory –Great synergy with LBNE about detector and facility –Neutrino Factory energy of 5 GeV compatible with 1300 km distance of FNAL to Sanford J.P.Delahaye CSS2013 (August 04, 2013)12

An attractive Neutrino route at the intensity frontier in FNAL context nuSTORM –10 17 straight muons 3.8 GeV –Great interest for Physics: sterile neutrinos and cross sections –Available technology and proton beam power: could (should) be launched now NeUtrinos from Muon Accelerators at ProjectX (NuMAX) as first stage –Neutrino Factory with straight muons 5 GeV –Great interest for Physics: Precision CP measurements, –Neutrino ring at 5 GeV pointing towards Sanford A 10kT MIND or magnetized LAr detector upgraded from LBNE –Without any cooling for reduced risk and early start –Phase 2 project X with GeV as proton driver Upgrade to full luminosity NuMAX+: straight muons GeV –Similar Physics performance as IDS-NF –Add 4D cooling : muons flux X 2 –Upgrade proton driver to 3MW (PX2) and later 4 of PX4 : muon flux X 5 Target station upgrade to larger beam power –Upgrade Sanford detector: Larger magnetized detector (34kT)? J.P.Delahaye CSS2013 (August 04, 2013)13 A.Bross

A Staged Neutrino Factory with far detector at SURF J.P.Delahaye CSS2013 (August 04, 2013)14 courtesy of P. Huber No cooling 4D cooling

The Muon Collider path at the energy frontier Low Energy Muon Collider built in stages: –Energy and luminosity defined by Physics –Possibly a Higgs factory if still useful at the time. –6D cooling but no final cooling Evolving towards Multi-TeV Muon Collider –Adding Final Cooling (30T solenoid) –More acceleration stages –High energy collider ring J.P.Delahaye CSS2013 (August 04, 2013)15

R&D platform at each Physics stage Principle: –MAP novel technologies to be validated in test facilities –Dedicated test facilities usually very expensive and not useful for Physics –Novel concept of test facility integrated into actual Facility stage aiming at development & validation of technology required by next stage NuSTORM as R&D platform for 6D cooling at moderate intensity –Source of muons per pulse –6D cooling validation for HIGGS factory and/or Muon Collider NuMAX as R&D platform for 4D cooling –complementary to 4D MICE at (very) low intensity –4D cooling validation for NuMAX+ NuMAX+ as R&D platform for 6D cooling at high intensity –6D cooling validation for HIGGS factory and Muon Collider HIGGS factory as R&D platform for final cooling –Final cooling validation for Muon Collider J.P.Delahaye CSS2013 (August 04, 2013)16 P.Snopok

nuSTORM as an R&D platform High-intensity pulsed muon source 100<p μ <300 MeV/c muons –Using extracted beam from ring –10 10 muons per 1 μ sec pulse Beam available simultaneously with physics operation –Sterile search –  cross interaction physics program nuSTORM provides opportunity to design, build & test: –decay ring instrumentation (BCT, momentum spectrometer, polarimeter) to measure & characterize the circulating muon flux –6D cooling of high intensity muon beam J.P.Delahaye CSS2013 (August 04, 2013)17

NuMAX->NuMAX+->HF->MC NuMAX 1 p+ driver No cooling Test facility: 4Dcooling NuMAX+ + 3 p+ driver + 4D cooling Test facility: 6D cooling Higgs Factory + p+driver + 6D cooling + further acceleration + Collider ring Test facility: final cooling Muon Collider + final cooling(40T solenoids) + further acceleration + high energy Collider Ring J.P.Delahaye CSS2013 (August 04, 2013)18 0.2–0.8 GeV 0.8 – 2.8 GeV Linac + 2  RLA PX2 (3 GeV, 3 MW) Accum Compr Proton Driver  Storage Ring Acceleration Front End Targe t PX4 (8 GeV, 4 MW) PX2 (3 GeV, 1 MW) 235m

LBNE To Far Detector in Sanford (1300km) Buncher/ Accumulator Rings & Target Linac + RLA SC 325MHz to ~5 GeV 5 GeV NF Decay Ring: s to Sanford +6D Front End+4D+6D RLA to 63 GeV + 300m Higgs Factory STORM + Muon Beam R&D Facility J.P.Delahaye 19 Preliminary (collab. project X) CSS2013 (August 04, 2013) Later upgradable to a Muon Collider with Tevatron size at 1.5 TeV

Critical paths and (very) tentative technically limited schedules J.P.Delahaye CSS2013 (August 04, 2013)20 Informed decision NuMAX Muon Collider

21 R. Tschirhart - Fermilab Users Meeting June 13th 2013 R. Tschirhart Fermilab Users June 13th 2013 Twenty and the (Lepton) Energy Frontier

Conclusion Physics requirements in the future depending of what Nature (and LHC) will tell us Ambitious future facilities but challenging and expensive Realistically built in stages –Series of facilities with reasonable budget and risk at each stage –R&D platform of each stage for validation of novel technology –Informed decision on following stages with risk mitigation –Flexibility of adaptation to physics requirements Unique opportunity of Muon based Accelerators allowing; –Attractive staged approach –Enabling facilities at both High Intensity and High Energy Frontiers –Neutrino Factory do not delay but builds foundation to Muon Collider Specially appealing at FNAL taking advantage and leveraging of projects or then existing facilities: –ProjectX, LBNE ProjectX = enabler of whole staging, should be given top priority J.P.Delahaye CSS2013 (August 04, 2013)22

J.P.Delahaye CSS2013 (August 04, 2013)23 arXiv: FERMILAB-CONF APC

Spares J.P.Delahaye CSS2013 (August 04, 2013)24

Staged Neutrino Factory and Muon Colliders main parameters J.P.Delahaye CSS2013 (August 04, 2013)25 Neutrino Factories based on ProjectX ph2 Muon Colliders based on ProjectX ph4

MAP Timeline MAP Feasibility Assessment Advanced Systems R&D Muon Ionization Cooling Experiment (MICE) IDS-NF RDR Proposed Muon Storage Ring Facility ( STORM) Evolution of Long Baseline Factory Collider Conceptual  Technical Design Collider Construction  Physics Program Pr X Stage I Pr X Stage II Pr X Stage III & IV At Fermilab, critical physics production could build on Stage II of Project X Indicates a date when an informed decision should be possible August 1, 2013 CSS IF/Capabilities Joint Session26

J.P.Delahaye 27CSS2013 (August 04, 2013) R&D timeline Best estimate at the time Major issues on critical path 1)MAP technology feasibility (L3NF) 2)4D Cooling (NF) & 6D Cooling (MC) 3) Proton beam power (NF & MC) Feasibility assessment & principle of cooling 4D&6D cooling demonstration 4

NuSTORM: Neutrinos from Stored Muons J.P.Delahaye CSS2013 (August 04, 2013)28 DOES NOT Require the Development of ANY New Technology An entry-level NF? NuSTORM Workshop held Sept FNAL: ( 3.8 GeV/c stored  Stage I approval requested at last weeks Fermilab PAC meeting 200kW A.Bross Fermilab P-1028

A Staged Neutrino Factory with far detector at SANFORD (LBNE)?  1 MW, no cooling (L3NF)  3 MW, with cooling (NF)  4 MW, with cooling (NF+) What if we were able to have a magnetized LAr detector? J.P.Delahaye CSS2013 (August 04, 2013)29 Plots courtesy of P. Huber Gray bands represent range of possible detector performance per arXiv: Plots assume 100 kt-years LBNE Neutrino Factory