Opportunities for statistical methods in nuclear reactions: Streamlining calibrations and improving sensitivity.

Slides:



Advertisements
Similar presentations
Advanced GAmma Tracking Array
Advertisements

Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Ion Beam Analysis techniques:
A probe for hot & dense nuclear matter. Lake Louise Winter Institute 21 February, 2000 Manuel Calderón de la Barca Sánchez.
Particle Production in p + p Reactions at GeV K. Hagel Cyclotron Institute Texas A & M University for the BRAHMS Collaboration.
Dual-axis, Duo Lateral Position Sensitive Detectors Robin Dienhoffer State University of New York at Oswego Advisor: Dr. Sherry Yennello Cyclotron Institute,
The development of the NIMISiS Bias Control GUI by Christopher Crane Mentor Dr. Sherry Yennello.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Simulation of a Ring Imaging Cerenkov detector to identify relativistic heavy ions. M.Fernández-Ordóñez, J.Benlliure, E.Casarejos, J.Pereira Universidad.
Radiation Detectors There are a variety of detectors that can be used to measure particles emitted from nuclear reactions. The various materials used in.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Black holes: do they exist?
Dominik Wermus (Virginia Military Institute, Lexington, VA 24450), Doug Higinbotham (Thomas Jefferson National Accelerator Facility, Newport News, VA,
- Mid-rapidity emission in heavy ion collisions at intermediate energies - Source reconstruction - Free nucleon multiplicities - Neutron/proton ratio of.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
The NSCL is funded in part by the National Science Foundation and Michigan State University. Determining the Impact Parameter and Cross-Section in Heavy.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
Observational techniques meeting #15
Measurement of J/  -> e + e - and  C -> J/  +   in dAu collisions at PHENIX/RHIC A. Lebedev, ISU 1 Fall 2003 DNP Meeting Alexandre Lebedev, Iowa State.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
Mid-peripheral collisions : PLF* decay Statistical behavior  isotropy  v H > v L  v L > v H P T TLF * PLF * 1 fragment v L > v H forward v H > v L backward.
Experimental search for the nuclear analog of the Prandtl- Glauert singularity effect at SIS100 A good reason to look back to a possibility of shock wave.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel WPCF 2013 Acireale, Italy 7-Nov-2013 Clustering and Low Density.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Event characterization. Many important aspects of heavy-ion dynamics require the characterization and selection of events. Two main examples: 1.Determination.
January 13, 2004A. Cherlin1 Preliminary results from the 2000 run of CERES on low-mass e + e - pair production in Pb-Au collisions at 158 A GeV A. Cherlin.
Fragmentation of relativistic 9 Be and 14 N nuclei in nuclear track emulsion D. A. Artemenkov JINR, Dubna BECQUREL Collaboration web site:
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
SP- 41 magnet ZDC RPC (TOF) DC ST Target T0 detector MPD / NICA and / Nuclotron Experiments Picosecond Cherenkov detectors for heavy ion experiments.
V. Pozdnyakov Direct photon and photon-jet measurement capability of the ATLAS experiment at the LHC Valery Pozdnyakov (JINR, Dubna) on behalf of the HI.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
V.Aulchenko 1,2, L.Shekhtman 1,2, B.Tolochko 3,2, V.Zhulanov 1,2 Budker Institute of Nuclear Physics, , Novosibirsk, Russia Novosibirsk State University,
Particle Identification of the ALICE TPC via dE/dx
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
1 Methods of PSD energy calibration. 2 Dependence of energy resolution on many factors Constant term is essential only for energy measurement of single.
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Advanced Gamma Tracking Array Andy Boston The Advanced Gamma Tracking Array
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
Nuclear emulsions One of the eldest particle detectors, still used in particle physics experiment (CHORUS, DONUT, OPERA) for its unique peculiarities:
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Phoswich Array for Sub-Fermi Energy Heavy Ion Reaction Dynamics
instrumentation examples
Novel Techniques for the Position Calibration of FAUST
The ATLAS Zero Degree Calorimeter Brookhaven National Laboratory, USA
Calorimeters at CBM A. Ivashkin INR, Moscow.
Ternary Fission and Neck Fragmentation
Diagnostics of FRIBs beam transport line
AQUA-ADVANCED QUALITY ASSURANCE FOR CNAO
High-pT Identified Hadron Production in Au+Au and Cu+Cu Collisions
Soft Physics at Forward Rapidity
Cyclotron Institute, Texas A&M University
STAR Geometry and Detectors
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Geometry of experimental setup for studies of inverse kinematics reactions with ROOT Students*: Dumitru Irina, Giubega Lavinia-Elena, Lica Razvan, Olacel.
K. Hagel IWNDT 2013 College Station, Texas 20-Aug-2013
1. Introduction Secondary Heavy charged particle (fragment) production
Physics cases for tracking
Presentation transcript:

Opportunities for statistical methods in nuclear reactions: Streamlining calibrations and improving sensitivity

Crab Nebula, HST Image IV Proj Targ V‖V‖ ~v p ~ ½v p V⊥V⊥ Supernova Mass: 4.6 ± 1.8 M ⊙. (~9.2x10 30 kg) Temperature: 100 GigaKelvin IV Source ‘femtonova’ Mass: amu (~3.3x kg) Temperature: 100 GigaKelvin Nuclear Reaction from Heavy Ion Collision

TAMU Cyclotron Institute

Heavy Ion Reactions Projectile Target - stationary Impact Parameter (b) Large b, forward focused, few fragments Peripheral

Heavy Ion Reactions Projectile Target Impact Parameter (b) b~0, still somewhat forward focused, many fragments Central

Heavy Ion Reactions Projectile Target Impact Parameter (b) Mid b, forward focused, range of fragment multiplicity Mid-Peripheral

Heavy Ion Reactions : what we observe Each detected event (1-30 particles/event) ….hundreds of millions of events

Example problems that better algorithms might solve: Particle Identification, Calibration, Position – Can take years to process these plots by hand  Functional Data Clustering Online/offline analog signal analysis  Neural network Signal Dimensionality Reduction  Sliced Inverse Regression Spectra fitting – Error estimates are very large, could improve confidence in the uniqueness of the result

What is NIMROD? Large, multi-detector array for observing reactions between massive targets and projectiles – Total of 228 detector modules arranged in 14 annular rings 2-3 detectors/module – Projectile energies ranging from 20MeV to 4GeV – Measure 10s of fragments for each nucleus-nucleus collision Example Detector Module ΔEΔE E

DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 Event 1 Event 2 DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 Event s of millions of events Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30

FAUST  68 Si-CsI(Tl) Telescopes  Dual-Axis Duolateral Silicons – Improve Angular Resolution – Uniform resistance – Charge-splitting – Position resolution <200 μm E ΔEDΔED ΔELΔEL ΔERΔER ΔEUΔEU

DetNum1, ΔEL1, ΔER1, ΔEU1, ΔED1, E1 DetNum2, ΔEL2, ΔER2, ΔEU2, ΔED2, E2 DetNum3, ΔEL3, ΔER3, ΔEU3, ΔED3, E3 DetNum4, ΔEL4, ΔER4, ΔEU4, ΔED4, E4 DetNum5, ΔEL5, ΔER5, ΔEU5, ΔED5, E5... up to 20 or 30 Event 1 Event 2 Event s of millions of events Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 DetNum1, ΔEL1, ΔER1, ΔEU1, ΔED1, E1 DetNum2, ΔEL2, ΔER2, ΔEU2, ΔED2, E2 DetNum3, ΔEL3, ΔER3, ΔEU3, ΔED3, E3 DetNum4, ΔEL4, ΔER4, ΔEU4, ΔED4, E4 DetNum5, ΔEL5, ΔER5, ΔEU5, ΔED5, E5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 DetNum1, ΔEL1, ΔER1, ΔEU1, ΔED1, E1 DetNum2, ΔEL2, ΔER2, ΔEU2, ΔED2, E2 DetNum3, ΔEL3, ΔER3, ΔEU3, ΔED3, E3 DetNum4, ΔEL4, ΔER4, ΔEU4, ΔED4, E4 DetNum5, ΔEL5, ΔER5, ΔEU5, ΔED5, E5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30

Particle Identification Plot combinations of detectors in modules Example Detector Module ΔEΔE E CsI (E) Si (ΔE) vs CsI (E) Si (ΔE) vs Si (ΔE)

Particle Identification Plot combinations of detectors in modules Place points along each major line, by hand E ΔE Example Detector Module ΔEΔE E

Particle Identification Plot combinations of detectors in modules Place points along each major line, by hand Use points to straighten the lines, project onto x-axis – Identify Z,A of particle Be, B, C, …

Energy Calibration: FAUST Each line corresponds to a constant Energy Ohm’s Law Front 1 Front 2

Energy Calibration: FAUST

Position Calibration: FAUST

15 MeV/u alpha + collimated Au (1mm) Degrees of Freedom: 3 Position 3 Rotation 2 Stretching

DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 Event 1 Event 2 DetNum1, ΔE1, E1 DetNum2, ΔE2, E2 DetNum3, ΔE3, E3 DetNum4, ΔE4, E4 DetNum5, ΔE5, E5... up to 20 or 30 Event s of millions of events Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 Z1, A1, E1, θ1, φ1 Z2, A2, E2, θ2, φ2 Z3, A3, E3, θ3, φ3 Z4, A4, E4, θ4, φ4 Z5, A5, E5, θ5, φ5... up to 20 or 30 E*, E rel, Q shape, T, τ equila, ρ, flow,...

Sliced Inverse Regression Key ingredients of a model  subtle effect on several individual observables SIR method can reduce this to a large effect in a combined observable P. Cammarata et al. Nuclear Instruments and Methods in Physics Research A 761, 1 (2014)

Machine Learning – Analog Signal Analysis Particle ID using Fast-Slow relies on somewhat arbitrary integration limits Machine learning / neural networks analysis of the full digitized pulse should provide better resolution Online (real time) decisions based on pulse features can drastically reduce IO and storage requirements Scintillation Light (arb units) Time (ns)

Fin