 Conceptual Origins  Nature- behavioral and personality traits originate from heredity Traits come from biological parents  Nurture- behavioral and.

Slides:



Advertisements
Similar presentations
Chapter 11 Other Chi-Squared Tests
Advertisements

 2 test for independence Used with categorical, bivariate data from ONE sample Used to see if the two categorical variables are associated (dependent)
AP Stat Trivia Review.
Chi-Squared Hypothesis Testing Using One-Way and Two-Way Frequency Tables of Categorical Variables.
I Scream, You Scream, We All Scream for Ice Cream! Sarah Beeson, Jill Hall, Sarah Regan.
CHAPTER 23: Two Categorical Variables The Chi-Square Test ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture.
Does Background Music Influence What Customers Buy?
AP Statistics: Section 8.1A Binomial Probability.
Sneaky Sneakers By: Blake Smith Jesse Lee Jen Feder.
1 Chi-Squared Distributions Inference for Categorical Data and Multiple Groups.
Chi-square test Chi-square test or  2 test. Chi-square test countsUsed to test the counts of categorical data ThreeThree types –Goodness of fit (univariate)
ANOVA: ANalysis Of VAriance. In the general linear model x = μ + σ 2 (Age) + σ 2 (Genotype) + σ 2 (Measurement) + σ 2 (Condition) + σ 2 (ε) Each of the.
Statistics 303 Chapter 9 Two-Way Tables. Relationships Between Two Categorical Variables Relationships between two categorical variables –Depending on.
Stat 217 – Day 27 Chi-square tests (Topic 25). The Plan Exam 2 returned at end of class today  Mean.80 (36/45)  Solutions with commentary online  Discuss.
WARM UP Pick the 4 papers from back of room and then check your answer to 12 (d-i)
Cross-Tabulations.
FINAL PROJECT Bliss Brannon, Dan Faulkner, Ryan Dickson.
Texting and Driving Joanna Curran And Brianna Baer.
1 Chapter 20 Two Categorical Variables: The Chi-Square Test.
Student Opinion Survey AP Stat Final Project by John Graziano Ryan Guthier Lydia Keener.
Presentation 12 Chi-Square test.
1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Analysis of Categorical Data Test of Independence.
Final Project Significance Testing Excellent Student #1 Excellent Student #2 Don’t cry for me Canyon Crest A survey study about depression at CCA.
Sampling for Research. Types of Research Quantitative – the collection & analysis of data to describe, explain, predict, or control phenomena of interest.
 Involves testing a hypothesis.  There is no single parameter to estimate.  Considers all categories to give an overall idea of whether the observed.
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 10 Inferring Population Means.
©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture 1 Lecture 33: Chapter 12, Section 2 Two Categorical Variables More.
Vending Machine Adventures By: Pat Casey, Dan Cardamone, Heejun Yang.
Sarah Hadyniak and Kathy Fein I cannot live without books. ~Thomas Jefferson.
By: Jackie, Molly & Franny Hey What’s up? What’s your Favorite Color? TEXT REACTION.
Chi-square test or c2 test
What is Development? Systematic changes and continuities –In the individual –Between conception and death “Womb to Tomb” Three broad domains –Physical,
Chi-square test Chi-square test or  2 test Notes: Page Goodness of Fit 2.Independence 3.Homogeneity.
Jenny Clift Gena Omelyaneko Tori Langan. Background The first TV commercial was broadcasted on July 1, 1941 It was on the New York station WNBT The ad.
Copyright © 2009 Pearson Education, Inc LEARNING GOAL Interpret and carry out hypothesis tests for independence of variables with data organized.
FASHION VERSUS MUSIC BB JULIE. On the Runway… First couture fashion house established in Paris (WW1) – women wear pants and work in factories.
Chapter 11 The Chi-Square Test of Association/Independence Target Goal: I can perform a chi-square test for association/independence to determine whether.
13.2 Chi-Square Test for Homogeneity & Independence AP Statistics.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 13 Multiple Regression Section 13.3 Using Multiple Regression to Make Inferences.
Chap 11-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 11 Chi-Square Tests Business Statistics: A First Course 6 th Edition.
Psychological Research Methods Psychology: Chapter 2, Section 2.
Tara Levine, Bridget Sanelli, Madeline Stenken Block 3 AP Statistics.
+ Chapter 11 Inference for Distributions of Categorical Data 11.1Chi-Square Goodness-of-Fit Tests 11.2Inference for Relationships.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
By: Avni Choksi and Brittany Nguyen
Buon appetite! A sandwich survey of Altomonte’s Italian Market & Delicatessen By Nicole Cianciarulo, Amanda Hofstaedter & Kaycee Schaefer.
What is Development? Systematic changes and continuities –In the individual –Between conception and death “Womb to Tomb” Three broad domains –Physical,
Chi-square test Chi-square test or  2 test. Chi-square test countsUsed to test the counts of categorical data ThreeThree types –Goodness of fit (univariate)
Amanda and Marlee. About Planet Smoothie! 3 rd Largest American Smoothie Company Founded 1995; Atlanta, GA Bonnie Rhinehardt –President Franchise 16 States.
Michelle Ji, Samantha Shober, April Zhang Block 4 16 May 2011.
Chi-Squared Test of Homogeneity Are different populations the same across some characteristic?
The χ 2 (Chi-Squared) Test. Crazy Dice? You roll a die 60 times and get: 3 ones, 6 twos, 19 threes, 22 fours, 6 fives, and 4 sixes  Is this a fair die?
CHAPTER 1 UNDERSTANDING LIFE- SPAN HUMAN DEVELOPMENT.
Test of Independence Tests the claim that the two variables related. For example: each sample (incident) was classified by the type of crime and the victim.
Chi Square Procedures Chapter 14. Chi-Square Goodness-of-Fit Tests Section 14.1.
Comparing Two Proportions Chapter 21. In a two-sample problem, we want to compare two populations or the responses to two treatments based on two independent.
Copyright © 2009 Pearson Education, Inc LEARNING GOAL Interpret and carry out hypothesis tests for independence of variables with data organized.
Chapter 8: The Binomial and Geometric Distributions 8.1 – The Binomial Distributions.
CHAPTER 26 Comparing Counts.
Chi-Square hypothesis testing
Presentation 12 Chi-Square test.
Chi-square test or c2 test
Chi-squared test or c2 test
Chapter 11 Chi-Square Tests.
Chi-square test or c2 test
X2 = X2 Test of Independence P-Value =
Chi-square test or c2 test
Chapter 11 Chi-Square Tests.
Chapter 11 Chi-Square Tests.
Presentation transcript:

 Conceptual Origins  Nature- behavioral and personality traits originate from heredity Traits come from biological parents  Nurture- behavioral and personality traits come from the environment in which individual is raised in Traits come from setting vs.

 Historical Origins  Exact origin of titled concept is unknown  Discussed by Francis Galton (English Victorian Polymath), Shakespeare, Charles Darwin, and John Locke (English Philosopher) in various settings

 What factors influence one’s opinions on “Nature vs. Nurture?”  Decade Born?  Political Affiliation?  Number of Siblings?  Is there a noticeable difference in the opinions of males and females?

 Written survey taken by subjects in public place (Valley Square)  Systematic sampling- every other person seen was chosen to take survey Parents with young children disregarded for politeness  Surveys taken on Wednesday, June 1 st, between 3pm and 5pm  Additional surveys completed by adult members of Zack and George’s scout troops  We needed more old people

 Gender (circle one): Male Female  Decade Born (circle one): 1940s 1950s 1960s 1970s 1980s 1990s  Political Affiliation (circle One): Republican Democrat Independent Other None   Number of siblings (circle one):  In your opinion, do someone’s behavioral and personality traits originate more from heredity (NATURE) or the environment in which he/she was raised (NURTURE)? Please circle the ratio of the relationship between “nature” and “nurture” that is closest to your opinions.  100% Nature  75% Nature, 25% Nurture  50% Nature, 50% Nurture  25% Nature, 75% Nurture  100% Nurture

 All data categorized and entered into fathom Some groups combined so all conditions could be met Response to Nature vs. Nurture question, decade born, political affiliation  X² Test of Independence performed on each variable Conditions checked and met Mechanics performed Conclusions made  Two out of four variables (gender, decade born, political affiliation, number of siblings) DO affect one’s opinions on Nature vs. Nurture!

 Predict which two variables have a relationship with one’s opinion on nature vs. nurture  Gender?  Decade Born?  Political Affiliation?  Number of Siblings?  What is the relationship?

Choice A: Majority/All Nature Choice B: 50/50 Nature/Nurture Choice C: Majority/ All Nurture M: Male F: Female

- Males: - Choice A: 27.1% - Choice B: 35.6% - Choice C: 37.3% - Females: - Choice A: 20.8% - Choice B: 45.8% - Choice C: 33.3%

Choice A: Majority/All Nature Choice B: 50/50 Nature/Nurture Choice C: Majority/ All Nurture Decade A: 1930s-1960s Decade B: 1970s-1990s

-1930s-1960s: -Choice A: 40.8% -Choice B: 28.6% -Choice C: 30.6% -1970s-1990s: -Choice A: 10.3% -Choice B: 50% -Choice C: 39.7%

Choice A: Majority/All Nature Choice B: 50/50 Nature/Nurture Choice C: Majority/ All Nurture D: Democrat O: Other R: Republican

- Democrats: - Choice A: 26.3% - Choice B: 39.5% - Choice C: 34.2% - Republicans: - Choice A: 10.3% - Choice B: 50% - Choice C: 39.7% - Other - Choice A: 33.3% - Choice B: 36.7% - Choice C: 30%

Choice A: Majority/All Nature Choice B: 50/50 Nature/Nurture Choice C: Majority/ All Nurture Sibling Choice A: 0-2 Siblings Sibling Choice B: 3+ Siblings

-0 to 2 Siblings: -Choice A: 10.8% Choice B: 52.3% Choice C: 36.9% -3+ Siblings -Choice A: 45.2% -Choice B: 21.4% -Choice C: 33.3%

44.9% 55.1% 35.5% 28% 36.5%60.7% 39.3% 45.8% 54.2%

 Political affiliation and gender do not effect an individual’s opinions on Nature vs. Nurture in our community  Decade born and number of siblings DO effect an individual’s opinion on Nature vs. Nurture  Individuals born from 1930s-1960s more likely to believe that NATURE is a larger factor  Individuals born from 1970s-1990s more likely to believe that Nature and Nurture play equal roles or that NURTURE is a larger factor  Individuals with 3+ siblings are more likely to believe that NATURE is a larger factor

 Conditions  1) Categorical Data--- Gender is categorical  2) SRS--- Yes, systematic sampling of random population  3) All expected counts ≥5--- Yes they are  Ho: No association exists between Gender and NvN  Ha: Association exists between Gender and NvN

DF= 2 P(X²>1.237)=.54 -We fail to reject Ho because P-value.54 > α=.05. -We have sufficient evidence that there is no association between gender and opinion on Nature vs. Nurture

 Conditions  1) Categorical Data--- Decade Born is categorical  2) SRS--- Yes, systematic sampling of random population  3) All expected counts ≥5--- Yes they are  Ho: No association exists between decade born and NvN  Ha: Association exists between decade born and NvN

DF=2P(X²>13.8)=.001 -We reject Ho because P-value.001< α= We have sufficient evidence that an association exists between decade born and opinion on Nature vs. Nurture

 Conditions  1) Categorical Data-Political Affiliation is categorical  2) SRS--- Yes, systematic sampling of random population  3) All expected counts ≥5--- Yes they are  Ho: No association exists between political affiliation and NvN  Ha: Association exists between political affiliation and NvN

DF=4 P(X²>3.165) =.53 - We fail to reject Ho because P-value.53> α=.005 -We have sufficient evidence that there is no association between political affiliation and opinion on Nature vs. Nurture

Conditions 1) Categorical Number of siblings (in this case) is categorical 2) SRS--- Yes, systematic sampling of random population 3) All expected counts ≥5--- Yes they are Ho: No association exists between number of siblings and NvN Ha: Association exists between number of siblings and NvN

DF= 2P(X²>18.62)= We reject Ho because P-value.0001 < α=.005 -We have sufficient evidence that an association exists between number of siblings and opinion on Nature vs. Nurture

 From the findings of the X² Tests of Independence, we can conclude that in our population:  No association exists between one’s opinion on Nature vs. Nurture and gender  No association exists between one’s opinion on Nature vs. Nurture and political affiliation  An association exists between one’s opinion on Nature vs. Nurture and the decade in which one was born  An association exists between one’s opinion on Nature vs. Nurture and the number of siblings one has

 One visit to Valley Square not fully representative of population  Multiple visits in other public places could be yield more accurate results  Parents with young children disregarded  Perhaps parents with young children have particular opinions on Nature vs. Nurture  Personal error  Only one person asked for volunteers  Intimidation factor- 3 observers approaching one subject  Bias in wording or survey  Response bias in survey

 Surprised with association between siblings and opinions on Nature vs. Nurture  We thought that the association would be the reverse of what it turned out to be  Not surprised with association between decade born and opinions on Nature vs. Nurture  Opinions are more progressive as time progresses- who you are is not solely determined by your genes  Not surprised with no associations between political affiliation/ gender and Nature vs. Nurture