Chapman Conference “Fundamental Properties and Processes of Magnetotails” 12 March 2013, Tuesday,1205-1220 p.m. Structure of Magnetic Reconnection in the.

Slides:



Advertisements
Similar presentations
Three Species Collisionless Reconnection: Effect of O+ on Magnetotail Reconnection Michael Shay – Univ. of Maryland Preprints at:
Advertisements

Grad-Shafranov reconstruction of a bipolar Bz signature in an earthward jet in the tail Hiroshi Hasegawa (2007/02/14)
Anti-Parallel Merging and Component Reconnection: Role in Magnetospheric Dynamics M.M Kuznetsova, M. Hesse, L. Rastaetter NASA/GSFC T. I. Gombosi University.
A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS S. Peter Gary,
Particle Simulations of Magnetic Reconnection with Open Boundary Conditions A. V. Divin 1,2, M. I. Sitnov 1, M. Swisdak 3, and J. F. Drake 1 1 Institute.
Kinetic properties of magnetic reconnection induced by the MHD-scale Kelvin-Helmholtz vortex: particle simulations 中村 琢磨 (T.K.M. Nakamura) Collaboraters:
Near-Earth Magnetotail Reconnection and Plasmoid Formation in Connection With a Substorm Onset on 27 August 2001 S. Eriksson 1, M. Oieroset 2, D. N. Baker.
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
Observations of the ballooning and interchange instabilities in the near-Earth magnetotail at substorm expansion onsets Yukinaga Miyashita (STEL, Nagoya.
The Many Scales of Collisionless Reconnection in the Earth’s Magnetosphere Michael Shay – University of Maryland.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland Magnetic Reconnection Theory 2004 Newton Institute.
Five Spacecraft Observations of Oppositely Directed Exhaust Jets from a Magnetic Reconnection X-line Extending > 4.3 x 10 6 km in the Solar Wind Gosling.
Studying Solar Wind Magnetic Reconnection Events using the Cluster 4-point Measurement Capability A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, C. Forsyth.
Walen and Slow-mode Shock Analyses Applied to High-Speed Flows of the Near-Earth Magnetotail S. Eriksson 1, C. Mouikis 2, M. W. Dunlop 3, M. Oieroset 4,
1 MAGNETIC FIELD RECONNECTION FROM FIRST PRINCIPLES TO LATEST RESULTS by Forrest Mozer.
The Structure of the Parallel Electric Field and Particle Acceleration During Magnetic Reconnection J. F. Drake M.Swisdak M. Shay M. Hesse C. Cattell University.
Cutting-Edge Results from Formation Flying Observations Cutting-Edge Results from Formation Flying Observations near Earth’s magnetopause Hiroshi Hasegawa.
Solar Flare Particle Heating via low-beta Reconnection Dietmar Krauss-Varban & Brian T. Welsch Space Sciences Laboratory UC Berkeley Reconnection Workshop.
Turbulent Reconnection in a Partially Ionized Gas Cracow October 2008 Alex Lazarian (U. Wisconsin) Jungyeon Cho (Chungnam U.) ApJ 603, (2004)
SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
A Fermi Model for the Production of Energetic Electrons during Magnetic Reconnection J. F. Drake H. Che M. Swisdak M. A. Shay University of Maryland NRL.
Magnetic Reconnection in Multi-Fluid Plasmas Michael Shay – Univ. of Maryland.
Hamrin, M., Norqvist, P., Marghitu, O., et al. Department of Physics, Umeå University, Sweden Nordic Cluster.
Kinetic Modeling of Magnetic Reconnection in Space and Astrophysical Systems J. F. Drake University of Maryland Large Scale Computation in Astrophysics.
Studying Solar Wind Magnetic Reconnection Events using Cluster. A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, I. J. Rae 1, C. Forsyth 1, E. Lucek 2, H.
Structure and Detection of Rolled-up Kelvin-Helmholtz Vortices in the Tail Flank of the Magnetosphere H. Hasegawa, M. Fujimoto, T. K. M. Nakamura, K. Takagi.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
Magnetosphere-Ionosphere coupling processes reflected in
Small Scale Magnetic Reconnection in the Solar Wind. A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, I. J. Rae 1, C. Forsyth 1, E. Lucek 2, H. Rème 3 1.UCL,
Anomalous resistivity due to lower-hybrid drift waves. Results of Vlasov-code simulations and Cluster observations. Ilya Silin Department of Physics University.
Reconnection rates in Hall MHD and Collisionless plasmas
GEM 2008 Summer Workshop, Zermatt, Utah, June 25, Institute of Geophysics and Planetary Physics University of California, Los Angeles THEMIS observations.
Response of the Magnetosphere and Ionosphere to Solar Wind Dynamic Pressure Pulse KYUNG SUN PARK 1, TATSUKI OGINO 2, and DAE-YOUNG LEE 3 1 School of Space.
Cluster observations of a reconnection site at high- latitude magnetopause Y. Khotyaintsev (1), A. Vaivads (1), Y. Ogawa (1,2), M. André(1), S. Buchert(1),
PHYSICS AND ENGINEERING PHYSICS The Disruption Zone Model of Magnetospheric Substorms George Sofko, Kathryn McWilliams, Chad Bryant I SuperDARN 2011 Workshop,
Chapman Conference “Fundamental Properties and Processes of Magnetotails” 12 March 2013, Tuesday, p.m. Structure of Magnetic Reconnection in the.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland presented in honor of Professor Eric Priest September 8, 2003.
GEOSYNCHRONOUS SIGNATURES OF AURORAL SUBSTORMS PRECEDED BY PSEUDOBREAKUPS A. Kullen (1), S. Ohtani (2), and H. Singer (3) A. Kullen (1), S. Ohtani (2),
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
Mass Transport: To the Plasma Sheet – and Beyond!
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
Sani 1 June 15, 2009 Introduction on bursty flows Particle distributions and ion acceleration Electron acceleration and effects Linear and non-linear waves:
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS Yulia V. Bogdanova, Berndt Klecker and CIS TEAM.
Multi-Fluid/Particle Treatment of Magnetospheric- Ionospheric Coupling During Substorms and Storms R. M. Winglee.
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
MHD Simulations of magnetotail reconnection (J. Birn) Observations MHD simulation: overview Propagation of dipolarization signals Generation of pulsations:
SS Special Section of JGR Space Physics Marks Polar’s 5th Anniversary September 4, 1996 This April special section is first of two Polar special sections.
Magnetotail Reconnection T. Nagai Tokyo Institute of Technology Harry Petschek Symposium on Magnetic Reconnection March 22, 2006 Wednesday 12:00 – 12:30.
1 NSSC National Space Science Center, Chinese academy of Sciences FACs connecting the Ionosphere and Magnetosphere: Cluster and Double Star Observations.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Cluster observation of electron acceleration by ULF Alfvén waves
Magnetic Reconnection in Solar Flares
Data-Model Comparisons
PIC code simulations of solar flare processes Astronomical Institute
Paul Song Center for Atmospheric Research
THEMIS multi-spacecraft observations of a 3D magnetic
THEMIS observations at a substorm onset on March 1, 2008
THEMIS SWG, Annapolis, Sept. 14, 2011 Supported by NSF grant #
The Physics of the Collisionless Diffusion Region
Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November ,ApJ, 622,1251 J. Lin, Y.-K. Ko, L. Sui, J. C. Raymond, G.
High-Speed Plasma Flows Observed in the Magnetotail during Geomagemtically Quiet Times: Relationship between Magnetic Reconnection, Substorm and High-Speed.
Magnetic reconnection X-line crossing by THEMIS-B on February 7, 2009
THEMIS Dayside Lessons learned from the coast phase and the 1st dayside season Current plans for the 2nd dayside season and the extended phases.
Jan. 29, 2008 substorm event ( UT) Waves/particles
Marit Øieroset UC Berkeley
Evidence for magnetic reconnection in the high corona
Presentation transcript:

Chapman Conference “Fundamental Properties and Processes of Magnetotails” 12 March 2013, Tuesday, p.m. Structure of Magnetic Reconnection in the Earth’s Magnetotail Geotail Observations T. NagaiTokyo Institute of Technology 6/27/2016 6:53 PM1

2 20 th Anniversary of Geotail Observations Launch on 24 July 1992 Prof. Atsuhiro Nishida “Person of Cultural Merit” in 2012 (an official Japanese recognition and honor)

6/27/2016 6:53 PM3 20-year Geotail observations 2 clear-cut encounters of the magnetic reconnection site observation observation time probability ion-electron decoupling region 336 s 0.000,000,53 (96+240) electron diffusion region 36 s 0.000,000,057 (12+24)

6/27/2016 6:53 PM4 Magnetic field structure Outflows (electron Vx and ion Vx) Out-of-plane current (electron Vy and ion Vy) Magnetic Reconnection Simulation

6/27/2016 6:53 PM UT 15 May 2003

Tailward flows Earthward flows Bz 0 Tailward flows Earthward flows ion energy-time diagrams 5 minutes Bz > 0 Bz < 0 6/27/2016 6:53 PM6

7 Ve Vi Magnetic field (MGF) Plasma (LEP) Ion and electron Velocity Number density

6/27/2016 6:53 PM8 electron Vx ion Vx ion Vy electron Vy

6/27/2016 6:53 PM9 58 electron Vx ion Vx ion Vy electron Vy

6/27/2016 6:53 PM10 -v ix +v ix +v ex -v ex Direct detection of the dissipation region S. Zenitani, I. Shinohara, and T. Nagai, Geophys. Res. Lett., 39, L11102, 2012.

ion-electron decoupling Ve >> Vi intense electron current layer large Vey Spatial Scales MHD 1057: :44 UT 6/27/2016 6:53 PM11

time Bz > 0 Bz < 0 Tailward flowsEarthward flows Bz > 0 Bz < 0 ion velocity distribution functions 1057: :44 UT 6/27/2016 6:53 PM12 Earth tail

+450 km/s -650 km/s Earthward flow speed tailward flow speed MHD flows 6/27/2016 6:53 PM13 Asymmetric MHD outflows

+550 km/s -550 km/s (+450 km/s) (-650 km/s) -100 km/s MHD flows tailward velocity of reconnection site 6/27/2016 6:53 PM14

time Bz > 0 Bz < 0 Tailward flowsEarthward flows Bz > 0 Bz < 0 counter-streaming inflows ion velocity distribution functions 6/27/2016 6:53 PM15

Vx = +64 km/s Vx= -269 km/s inflows 6/27/2016 6:53 PM16 Asymmetric inflows

Vx = +164 km/s Vx= -169 km/s (+264 km/s -269 km/s) -100 km/s inflows Cluster results -100 km/s Baker et al Imada et al tailward velocity of reconnection site 6/27/2016 6:53 PM17 EarthTail

6/27/2016 6:53 PM18 1 i 8 i 8 i = 1.5 R E 1 i = 1200 km Geotail 15 May 2003 V MR = -100 km/s

6/27/2016 6:53 PM UT 05 May 2007

6/27/2016 6:53 PM Ve Vi Magnetic field (MGF) Plasma (LEP) Ion and electron Velocity Number density

6/27/2016 6:53 PM21 Ve Vi Ve

6/27/2016 6:53 PM22 Ve Vi Ve electron Vx ion Vx ion Vy electron Vy

Vx = km/s Vx= km/s (+375 km/s -500 km/s) km/s tailward velocity of reconnection site 6/27/2016 6:53 PM23

6/27/2016 6:53 PM24 8 i = 1.5 R E 1 i = 1200 km V MR = km/s 1 i 13 i

Main conclusions In the magnetic reconnection site of the near-Earth magnetotail 1.the central intense electron current layer (10 nA/m ) 1 i 2.ion-electron decoupling region 10 i 3.MHD regions outside the i-e decoupling region Nagai, T., I. Shinohara, M. Fujimoto, A. Matsuoka, T. Saito, and T. Mukai, J. Geophys. Res., 116, A04222, Zenitani, S., I. Shinohara, and T. Nagai, Geophys. Res. Lett., 39, L11102, /27/2016 6:53 PM i 10 i

6/27/2016 6:53 PM26 3D structure of magnetic reconnection Locations of Magnetic Reconnection Events 8 R E dawn-dusk width 10 i

6/27/2016 6:53 PM27 Structure of electron jets in magnetic reconnection Locations of Magnetic Reconnection Events MHD ion-electron decoupling out-of-plane current

6/27/2016 6:53 PM28 Structure of electron jets in magnetic reconnection Locations of Magnetic Reconnection Events Bz turning MHD

observationsimulation at TΩi = 35 Vix / Vex Vey / Vex Vix0.5 V A 0.3 V A the full extent of the central1 i 1 i electron current layer the full extent of 8 i 8 i the ion-electron decoupling region 6/27/2016 6:53 PM29

6/27/2016 6:53 PM30 30 Magnetic Reconnection Events In

6/27/2016 6:53 PM31

6/27/2016 6:53 PM32

6/27/2016 6:53 PM33

6/27/2016 6:53 PM34

6/27/2016 6:53 PM35

6/27/2016 6:53 PM36

6/27/2016 6:53 PM37

6/27/2016 6:53 PM38

6/27/2016 6:53 PM39

6/27/2016 6:53 PM40

Main Targets of This Paper 1.Detect the central intense electron current layer 2.Get scales of magnetic reconnection with Geotail observations  V A = 2,200 km/s  i = 1,200 km (ion inertial length) Geotail MGF16 vectors /s LEP12 s electron g-factor 4x10  T 5.5x /27/2016 6:53 PM41

6/27/2016 6:53 PM42

The simulation box size [−Lx/2,+Lx/2]×[−Lz/2,+Lz/2] Lx = 48D Lz = 24D initial current sheet thickness D = 0.5λi Δ is equal to the Debye λi = 200Δ The number of simulation grids 4800×2400 Particle number1.5×10 particles for each species n CS Ti; CS /Te; CS = 5 n BK = n CS Ti;BK = Te; BK = Te; CS ion to electron mass ratio mi/me = 400 frequency ratio ωpe/Ωe = 4, ω pe ≡√4πn CS e2/m e Ω e ≡ eB 0 /m e c λi ≡ c/ω pi = c/√4πn CS e2/m i The initial magnetic field the Harris sheet Bx(z) = B 0 tanh(z/D) B 0 the asymptotic magnetic field D the current sheet half-thickness The perturbed magnetic flux function ψ(x, z) = ψ 0 sin(2πx/Lx) cos(2πz/Lz) B (x, z) = eˆy × ∇ ψ(x, z) at TΩi = 35 Vi x ∼ 0.3V A V A the Alfven speed B 0 /√4πm i n CS 9 6/27/2016 6:53 PM45

time Bz > 0 Bz < 0 Tailward flowsEarthward flows Bz > 0 Bz < 0 Vy < 0 dawnward Vy > 0 duskward electron velocity distribution function In the equatorial plane 1057: :44 UT 6/27/2016 6:53 PM46 Earth tail

time Bz > 0 Bz < 0 Tailward flowsEarthward flows Bz > 0 Bz < 0 Hall electrons electron velocity distribution function 1057: :44 UT 6/27/2016 6:53 PM47 Earth tail

6/27/2016 6:53 PM48 electron Vx ion Vx electron Vy ion Vy MHD flows Vi = Ve Errors are small when energetic electrons are rich.