L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
©rlc L16-07Mar20111 PiN Diode PiN: N a >> N int (= N - ) & N int
Advertisements

Professor Ronald L. Carter
Department of Electronics Semiconductor Devices 26 Atsufumi Hirohata 11:00 Tuesday, 2/December/2014 (P/T 006)
Experiment 5 EE 312 Basic Electronics Instrumentation Laboratory Wednesday, September 27,
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Chapter 3 – Diodes Introduction Textbook CD
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
Integrated Circuit Devices Professor Ali Javey Summer 2009 MS Junctions Reading: Chapter14.
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
L08 07Feb021 EE Semiconductor Electronics Design Project Spring Lecture 08 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 12 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L9 February 151 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2005 Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
MOS Device Physics and Designs Chap. 3 Instructor: Pei-Wen Li Dept. of E. E. NCU 1 Chap 3. P-N junction  P-N junction Formation  Step PN Junction  Fermi.
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 10 Spring 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Professor Ronald L. Carter
Diodes Introduction Textbook CD
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Changing Device Parameters in PSpice
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Chapter 3 Solid-State Diodes and Diode Circuits
Presentation transcript:

L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter

L09 12Feb022 Diode Switching Consider the charging and discharging of a Pn diode –(N a > N d ) –W d << Lp –For t < 0, apply the Thevenin pair V F and R F, so that in steady state I F = (V F - V a )/R F, V F >> V a, so current source –For t > 0, apply V R and R R I R = (V R + V a )/R R, V R >> V a, so current source

L09 12Feb023 Diode switching (cont.) + + VFVF VRVR D R RFRF Sw R: t > 0 F: t < 0 V F,V R >> V a

L09 12Feb024 Diode charge for t < 0 xnxn x nc x pnpn p no

L09 12Feb025 Diode charge for t >>> 0 (long times) xnxn x nc x pnpn p no

L09 12Feb026 Equation summary

L09 12Feb027 Snapshot for t barely > 0 xnxn x nc x pnpn p no Total charge removed, Q dis =I R t

L09 12Feb028 I(t) for diode switching IDID t IFIF -I R tsts t s +t rr I R

L09 12Feb029 Band model review (approx. to scale) q  m ~ 4 + V EoEo E Fm E Fp E Fn EoEo EcEc EvEv E Fi q  s,n q  s ~ 4 + V EoEo EcEc EvEv E Fi q  s,p metaln-type s/cp-type s/c q  s ~ 4 + V

L09 12Feb0210 Ideal metal to n-type barrier diode (  m >  s,V a =0) E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn qV bi q’nq’n No disc in E o E x =0 in metal ==> E o flat  Bn =  m -  s = elec mtl to s/c barr V bi =  Bn -  n =  m -  s elect s/c to mtl barr Depl reg

L09 12Feb0211 Ideal m to n s/c barr diode depletion width xdxd x qN d  Q’ d = qN d x d x  ExEx -E m xdxd (Sheet of neg chg on mtl)= -Q’ d

L09 12Feb0212 Real Schottky band structure* Barrier transistion region,  Interface states above  o acc, p neutrl below  o dnr, n neutrl D it  -> oo, q  Bn  = E g -  o Fermi level “pinned” D it  -> 0, q  Bn  =  m -  Goes to “ideal” case

L09 12Feb0213 Fig 8.4* (a) Image charge and electric field lines at a metal-diel intf (b) Distortion of the potential barrier due to image forces with E=0 and (c) const E field

L09 12Feb0214 Ideal metal to n-type Schottky (V a >0) qV a = E fn - E fm Barrier for electrons from sc to m reduced to q(V bi -V a ) q  Bn the same DR decr E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn q(V bi -V a ) q’nq’n Depl reg

L09 12Feb0215 Ideal m to n s/c Schottky diode curr

L09 12Feb0216 DDiode General Form D [area value] Examples DCLAMP 14 0 DMOD D SWITCH 1.5 Model Form. MODEL D [model parameters].model D1N4148-X D(Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=4p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=10 0u Tt=11.54n) *$

L09 12Feb0217 Diode Model Parameters Model Parameters (see.MODEL statement) DescriptionUnit Default ISSaturation currentamp1E-14 NEmission coefficient1 ISRRecombination current parameteramp0 NREmission coefficient for ISR1 IKFHigh-injection “knee” currentampinfinite BVReverse breakdown “knee” voltagevoltinfinite IBVReverse breakdown “knee” currentamp1E-10 NBVReverse breakdown ideality factor1 RSParasitic resistanceohm0 TTTransit timesec0 CJOZero-bias p-n capacitancefarad0 VJp-n potentialvolt1 Mp-n grading coefficient0.5 FCForward-bias depletion cap. coef,0.5 EGBandgap voltage (barrier height)eV 1.11

L09 12Feb0218 Diode Model Parameters Model Parameters (see.MODEL statement) DescriptionUnit Default XTIIS temperature exponent3 TIKFIKF temperature coefficient (linear)°C -1 0 TBV1BV temperature coefficient (linear)°C -1 0 TBV2BV temperature coefficient (quadratic)°C -2 0 TRS1RS temperature coefficient (linear)°C -1 0 TRS2RS temperature coefficient (quadratic)°C -2 0 T_MEASUREDMeasured temperature°C T_ABSAbsolute temperature°C T_REL_GLOBALRel. to curr. Temp.°C T_REL_LOCALRelative to AKO model temperature °C For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see the.MODEL statement.

L09 12Feb0219 The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. is the anode and is the cathode. Positive current is current flowing from the anode through the diode to the cathode. [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values. In the following equations: Vd= voltage across the intrinsic diode only Vt= k·T/q (thermal voltage) k = Boltzmann’s constant q = electron charge T = analysis temperature (°K) Tnom= nom. temp. (set with TNOM option 

L09 12Feb0220 Dinj –N~1, rd~N*Vt/iD –rd*Cd = TT = –Cdepl given by CJO, VJ and M Drec –N~2, rd~N*Vt/iD –rd*Cd = ? –Cdepl =? SPICE Diode Model 

L09 12Feb0221 DC Current I d = area  ( I fwd - I rev) I fwd = forward current = I nrm  Kinj + I rec  Kgen I nrm = normal current = IS  (exp ( Vd/(N  Vt))-1) Kinj = high-injection factor For: IKF > 0, Kinj = (IKF/(IKF+ I nrm)) 1/2 otherwise, Kinj = 1 I rec = rec. cur. = ISR  (exp (Vd/(NR·Vt))- 1) Kgen = generation factor = ((1-Vd/VJ) ) M/2 I rev = reverse current = I rev high + I rev low I rev high = IBV  exp[-(Vd+BV)/(NBV·Vt)] I rev low = IBVL  exp[-(Vd+BV)/(NBVL·Vt)}

L09 12Feb0222 vD= V ext ln iD Data ln(IKF) ln(IS) ln[(IS*IKF) 1/2 ] Effect of R s V KF ln(ISR) Effect of high level injection low level injection recomb. current V ext -V a =iD*R s

L09 12Feb0223 References Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, MicroSim OnLine Manual, MicroSim Corporation, 1996.