Guillaume De l'Hôpital 1661 - 1704 8.1: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.

Slides:



Advertisements
Similar presentations
8.1: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
Advertisements

2-5: Techniques for Evaluating Limits
Guillaume De l'Hôpital day 1 LHôpitals Rule Actually, LHôpitals Rule was developed by his teacher Johann Bernoulli. De lHôpital paid Bernoulli.
8.7: Identifying Indeterminate Forms Brooklyn Bridge, New York City Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2008.
Guillaume De l'Hôpital L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.
L’Hôpital’s Rule. Another Look at Limits Analytically evaluate the following limit: This limit must exist because after direct substitution you obtain.
Guillaume De l'Hôpital day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid.
L’Hôpital’s Rule.
4.4 L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we direct substitution, we get:
Guillaume De l'Hôpital : Indeterminate forms and L’Hospital’s Rule.
5.3 Definite Integrals and Antiderivatives Greg Kelly, Hanford High School, Richland, Washington.
Calculus and Analytical Geometry
Lesson 8-1: Multiplying and Dividing Rational Expressions
8.2 L’Hôpital’s Rule Quick Review What you’ll learn about Indeterminate Form 0/0 Indeterminate Forms ∞/∞, ∞·0, ∞-∞ Indeterminate Form 1 ∞, 0 0, ∞
If we zoom in far enough, the curves will appear as straight lines. The limit is the ratio of the numerator over the denominator as x approaches a.
Guillaume De l'Hôpital L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli.
Guillaume De l'Hôpital Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De L’Hôpital paid Bernoulli for private lessons,
What makes an expression indeterminate? Consider: We can hold one part of the expression constant: There are conflicting trends here. The actual limit.
B.E. SEM 1 ELECTRICAL DIPARTMENT DIVISION K GROUP(41-52) B.E. SEM 1 ELECTRICAL DIPARTMENT DIVISION K GROUP(41-52)
8.7 L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we direct substitution, we get:
L’Hopital (Lo-pee-tal) was a French mathematician who wrote the first calculus textbook Remember back in the limits unit when we evaluated a limit and.
Extra L’Hôpital’s Rule. Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we try to evaluate this by direct.
AD4: L’Hoptital’s Rule P L’Hôpital’s Rule: If has indeterminate form or, then:
(MTH 250) Lecture 11 Calculus. Previous Lecture’s Summary Summary of differentiation rules: Recall Chain rules Implicit differentiation Derivatives of.
Sums and Differences of Rational Expressions Putting factoring skills to use again (7.8)
12-6 Rational Expressions with Like Denominators Objective: Students will be able to add and subtract rational expressions with like denominators.
3.7 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
3.3 Rules for Differentiation Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003 The “Coke Ovens”,
Guillaume de L'Hôpital Sophia Zhang. Introduction  Born : 1661, Paris France.  Died : 2 February 1704 (≈ aged 43) Paris, France.  Nationality : French.
10.3 day 2 Calculus of Polar Curves Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2007 Lady Bird Johnson Grove, Redwood National.
Guillaume De l'Hôpital day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid.
The Basics of Physics with Calculus AP Physics C.
Substitution & Separable Differential Equations
3.5 Implicit Differentiation
Bell Ringer Solve even #’s.
2.3 The Product and Quotient Rules (Part 1)
4.4 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
7-5: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
Unit 4 – Exponential, Logarithmic, and Inverse Trigonometric Functions
10.6: The Calculus of Polar Curves
Substitution & Separable Differential Equations
4.4: Indeterminate forms and L’Hospital’s Rule Guillaume De l'Hôpital
Indeterminate Forms and L’Hopital’s Rule
Guillaume De l'Hôspital
8.2 day 1 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons,
3.7: Indeterminate forms and L’Hospital’s Rule Guillaume De l'Hôpital
Indeterminate Forms and L’Hopital’s Rule
Mark Twain’s Boyhood Home
3.6 Implicit Differentiation
3.6 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
Substitution & Separable Differential Equations
or write out factors in expanded form.
Write out factors in expanded form.
5.3 Definite Integrals and Antiderivatives
3.6 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
8.1: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
2.1 Limits, Rates of Change, and Tangent Lines
L’Hôpital’s Rule Part I
8.7: L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
9.2 L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then.
7.7 L’Hôpital’s Rule Guillaume De l'Hôpital
2.4 The Chain Rule (Part 2) Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
3.5 The Chain Rule Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002.
Substitution & Separable Differential Equations
8.2 Day 2: Identifying Indeterminate Forms
3.7 Implicit Differentiation
Parametric Functions 10.1 Greg Kelly, Hanford High School, Richland, Washington.
5.3 Definite Integrals and Antiderivatives MLK JR Birthplace
Identifying Indeterminate Forms
Substitution & Separable Differential Equations
Presentation transcript:

Guillaume De l'Hôpital : L’Hôpital’s Rule Actually, L’Hôpital’s Rule was developed by his teacher Johann Bernoulli. De l’Hôpital paid Bernoulli for private lessons, and then published the first Calculus book based on those lessons. Greg Kelly, Hanford High School, Richland, Washington

Johann Bernoulli : L’Hôpital’s Rule

Zero divided by zero can not be evaluated, and is an example of indeterminate form. Consider: If we try to evaluate this by direct substitution, we get: In this case, we can evaluate this limit by factoring and canceling:

If we zoom in far enough, what will the curves begin to look like? The limit is the ratio of the numerator over the denominator as x approaches 2. Straight lines.

At x = 2 approaches approaches its tangent line = f (2) g (2) = So how can we use this to help us find the limit here? its tangent line

L’Hôpital’s Rule: If is indeterminate, then:

We can confirm L’Hôpital’s rule by working backwards, and using the definition of derivative:

Example: If it’s no longer indeterminate, then STOP! If we try to continue with L’Hôpital’s rule: which is wrong, wrong, wrong!

On the other hand, you can apply L’Hôpital’s rule as many times as necessary as long as the fraction is still indeterminate: not (Rewritten in exponential form.)

L’Hôpital’s rule can be used to evaluate other indeterminate forms besides. The following are also considered indeterminate: The first one,, can be evaluated just like. The others must be changed to fractions first.

This approaches We already know that but if we want to use L’Hôpital’s rule:

If we find a common denominator and subtract, we get: Now it is in the form This is indeterminate form L’Hôpital’s rule applied once. Fractions cleared. Still

L’Hôpital again.

Indeterminate Forms: Evaluating these forms requires a mathematical trick to change the expression into a fraction. L’Hôpital applied 