NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
Origin of the Elements.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Methods to directly measure non-resonant stellar reaction rates
Underground Measurement of the 17O+p Reactions
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
Prof. D.C. Richardson Sections
Life as a Low-mass Star Image: Eagle Nebula in 3 wavebands (Kitt Peak 0.9 m).
Chapter 17 Star Stuff.
6. Stars evolve and eventually ‘die’
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
Introduction to nuclear physics Hal. Nucleosynthesis Stable nuclei.
1 Some key problems and key reactions in Nuclear Astrophysics Main issues: BBN: was the universe always the same? What’s in the core of Sun and other MS.
Chapter 12: Stellar Evolution Stars more massive than the Sun The evolution of all stars is basically the same in the beginning. Hydrogen burning leads.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Lecture 4. Big bang, nucleosynthesis, the lives and deaths of stars. reading: Chapter 1.
Life Track After Main Sequence
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Irn Bru from the Stars (or, the stellar creation of the heavy elements) Dr. Lyndsay Fletcher University of Glasgow.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Lecture 24: Life as a High-Mass Star. Review from Last Time: life for low-mass stars molecular cloud to proto-star main sequence star (core Hydrogen burning)
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Two types of supernovae
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
Tariq Al-Abdullah Hashemite University, Jordan Cairo 2009 Problems and Issues in Nuclear Astrophysics.
Selected Topics in Astrophysics
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Life (and Death) as a High Mass Star. A “high-mass star” is one with more than about A) the mass of the Sun B) 2 times the mass of the Sun C) 4 times.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Unit 11: Stellar Evolution Mr. Ross Brown Brooklyn School for Law and Technology.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
Laboratori Nazionali del Gran Sasso. Stefano Ragazzi – INFN LNGS & UNIMIB 3400 m.w.e. 1.1 μ / (m 2 h) Muon flux: m -2 s -1 Neutron flux: 2.92.
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
L’esperimento LUNA- CdS MI giugno 2013
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
Stars, Accelerators and Underground Laboratories
Why going underground g-background
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Neutron production and monitoring at the new LUNA-MV facility
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
Nucleosynthesis and the origin of the chemical elements
BBN, neutrinos and Nuclear Astrophysics
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Nucleosynthesis and the origin of the chemical elements
Presentation transcript:

NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP)

NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi ASTROPHYSICS & PLASMA PHYSICS ASTRONOMY & COSMOLOGY NUCLEAR PHYSICS PARTICLE PHYSICS

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi NUCLEAR ASTROPHYSICS: the origin of the elements Elements that make up everything that we see around us were made by nuclear reactions and decays in stars. These processes also produce the energy that makes stars shine. The abundances of the elements and isotopes provide important information about the astrophysical environments where they were created. This field of research is called Nuclear Astrophysics. LUNA: Laboratory for Underground Nuclear Astrophysics

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THERMONUCLEAR FUSION Gamow Peak and Astrophysical S-factor [charge particles] where the Astrophysical S-factor S(E) is related to the cross section through:

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi GOING DEEP UNDERGROUND LUNA and the Laboratori Nazionali del Gran Sasso The reaction particles are hidden by natural (cosmic ray) background Deep Underground Laboratories are necessary: Gran Sasso, Felsenkeller and Canfranc in Europe

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE LUNA EXPERIMENT LUNA 50 kV ( ) – Solar Phase LUNA 400 kV ( ) – CNO, Mg-Al and Ne-Na cycles, BBN LUNA-MV (since 2018) – Helium burning LUNA ACCELERATOR High current Long term stability High energy accuracy TARGETS Windowless gas target Solid target DETECTORS 137% HPGe BGO Silicon NaI

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi LUNA 50 kV Energy range: kV Current: 1 mA Beam spread: 20 eV years and years ago… TAKE NOTE! Silver Moon workshop at LNGS

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi LUNA 400 kV Energy range: kV Current: 1 mA Beam spread: < 100 eV Stability: 5 eV/h

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi LUNA MV Energy range: kV Current: < 1 mA Beam spread: 350 eV Stability: < 35 eV/h This machine will provide not only proton and helium (3/4) but also 12 C + and 12 C ++ ↓ credits: HZDR, Dresden

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE LUNA EXPERIMENT LUNA 50 kV ( ) – Solar Phase LUNA 400 kV ( ) – CNO, Mg-Al and Ne-Na cycles, BBN LUNA-MV (since 2018) – Helium burning LUNA ACCELERATOR High current Long term stability High energy accuracy TARGETS Windowless gas target Solid target DETECTORS 137% HPGe BGO Silicon NaI

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE LUNA EXPERIMENT LUNA 50 kV ( ) – Solar Phase LUNA 400 kV ( ) – CNO, Mg-Al and Ne-Na cycles, BBN LUNA-MV (since 2018) – Helium burning LUNA ACCELERATOR High current Long term stability High energy accuracy TARGETS Windowless gas target Solid target DETECTORS 137% HPGe BGO Silicon NaI

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi ELECTRON SCREENING AND STOPPING POWER 2 H( 3 He,p) 4 He and 3 He( 2 H,p) 4 He SOLAR FUSION REACTION 3 He( 3 He,2p) 4 He 2 H(p,γ) 3 He and 3 He(α,γ) 7 Be CNO, Ne-Na AND Mg-Al CYCLES 14 N(p,γ) 15 O 15 N(p,γ) 16 O 22 Ne(p,γ) 23 Na 22 Ne(α, γ) 26 Mg 23 Na(p,γ) 24 Mg and 25 Mg(p,γ) 26 Al EXPLOSIVE HYDROGEN BURNING IN NOVAE AND AGB STARS 17 O(p,γ) 18 F 17 O(p,α) 14 N 18 O(p,γ) 19 F and 18 O(p,α) 15 N BIG BANG NUCLEOSYNTHESIS 2 H(α,γ) 6 Li 2 H(p,γ) 3 He and 6 Li(p,γ) 7 Be NEUTRON CAPTURE NUCLEOSYNTHESIS 13 C(α,n) 16 O at LUNA-MV: 12 C(α,γ) 16 O, 13 C(α,n) 16 O 22 Ne(α,n) 25 Mg, 12 C+ 12 C and much more… 25y of NUCLEAR ASTROPHYSICS AT LUNA

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 2 H(p,γ) 3 He REACTION SOLAR FUSION | BIG BANG NUCLEOSYNTESIS the 2 H(p,γ) 3 He reaction controls the equilibrium abundance of solar deuterium, The 2 H(p,γ) 3 He reaction controls the life of protostars before they enter into the main-sequence phase. LUNA demonstrate, for the first time, that it is possible to direct study solar fusion in the Gamow window from underground laboratories.

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 2 H(p,γ) 3 He REACTION SOLAR FUSION | BIG BANG NUCLEOSYNTESIS Primordial deuterium abundance is quite in agreement with the calculated value: HIGH PRECISION COSMOLOGICAL DATA (Planck) LOW PRECISION (about 9%) NUCLEAR DIRECT DATA IN THE BBN ENERGY RANGE RAW data (Feb 2016) High precision data is desirable (< 5%) L. E. Marcucci et al. paper Phys. Rev. Lett. 116,

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 14 N(p,γ) 15 O REACTION CNO & GLOBULAR CLUSTER The 14 N(p,γ) 15 O is the slowest reaction of the CNO cycle; it controls the cycle’s energy production rate. The turnoff luminosity point of a globular cluster is used to determine the age of the cluster → lower limit of the Universe age (TOL-A relation) «when a given turnoff luminosity is considered, the revised isochrones imply systematically older ages, namely between 0.7 and 1 Gyr.» Solar flux of CNO neutrinos reduced by a factor 2!

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 2 H(α,γ) 6 Li REACTION BIG BANG NUCLEOSYNTHESIS

M. Anders et al., PRL 113 (2014) Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 2 H(α,γ) 6 Li REACTION BIG BANG NUCLEOSYNTHESIS

M. Anders et al., PRL 113 (2014) Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 2 H(α,γ) 6 Li REACTION BIG BANG NUCLEOSYNTHESIS

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi THE 12 C(α,γ) 16 O REACTION THE HOLY GRAAL OF NUCLEAR ASTROPHYSICS The 12 C(α,γ) 16 O reaction: plays a fundamental role in the evolution of any star during the helium-burning phase. Determines the Carbon to Oxygen ratio abundance. Influences the nucleosynthesis of elements up to the iron peak for massive stars. Influences the cooling timescale of white dwarfs. Influences the proprieties of thermonuclear as well as core collapse supernovae. Gamow peak helium burning 300 keV – nb William A. Fowler, Nobel lecture 1983 … waiting for LUNA-MV

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi CONCLUSIONS: limits and future prospective Nuclear Astrophysics is forever: reactions never measured, unknown in given energy ranges, high precision required… LUNA-MV + LUNA 400 kV “usual” can not reach energies lower than 50 keV. In some reactions, electron screening correction must be applied. LUNA-MV can not produce too much neutrons (LNGS requirement). NEW OPPORTUNITIES for everybody

A. Boeltzig, A. Formicola, M. Junker, I. Kochanek, C. Savarese | Laboratori Nazionali del Gran Sasso/GSSI, Italy D. Bemmerer, M. Takacs, T. Szucs | HZDR, Germany C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo | Università di Padova and INFN Padova, Italy C. Gustavino | INFN Roma1, Italy Z. Elekes, Zs. Fülöp, Gy. Gyurky, E. Samorjai | INR MTA-ATOMKI Debrecen, Hungary O. Straniero | Collurania Astronomical Observatory Teramo, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy A. Guglielmetti, D. Trezzi | Università di Milano and INFN Milano, Italy A. Best, G. Imbriani, A. Di Leva | Università di Napoli “Federico II” and INFN Napoli, Italy G. Gervino | Università di Torino and INFN Torino, Italy M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh E. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini | Università di Bari and INFN Bari, Italy THE LUNA COLLABORATION Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi

Università degli Studi di Milano | INFN – New Vistas in Low-Energy Precision Physics (LEPP) NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA | D. Trezzi