CW Linac Lattice August, 29 N.Solyak, B.Shteynas.

Slides:



Advertisements
Similar presentations
MEBT Design Considerations The beam energy in the MEBT is sufficiently low for the space charge forces to have a considerable impact on the beam dynamics.
Advertisements

Final Design of a CW Radio-Frequency Quadrupole (RFQ) for the Project X Injector Experiment (PXIE)* Abstract: The Project X Injector Experiment (PXIE)
R. Miyamoto, Beam Physics Design of MEBT, ESS AD Retreat 1 Beam Physics Design of MEBT Ryoichi Miyamoto (ESS) November 29th, 2012 ESS AD Retreat On behalf.
ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.
Project X Injector Experiment (PXIE) Steve Holmes Fermilab Proton Accelerators for Science and Innovation: Second Annual Meeting Rutherford Appleton Laboratory.
1 Dejan Trbojevic EIC Collaboration Meeting, Hampton University, Virginia May 19, 2008 Dejan Trbojevic e-RHIC with non-scaling FFAG’s.
1 Front End Studies and Plans David Neuffer FNAL (November 10, 2009)
1 M. Popovic NFMC Collaboration Meeting IIT Muon (Pre)Acceleration for 8 GeV Proton Driver Linac Milorad Popovic FNAL 14-March.
-Factory Front End Phase Rotation Optimization David Neuffer Fermilab Muons, Inc.
MEBT & RT CH Section Thomas Page Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006.
Ajit Kurup, C. Bontoiu, M. Aslaninejad, J. Pozimski, Imperial College London. A.Bogacz, V. S. Morozov, Y.R. Roblin Jefferson Laboratory K. B. Beard, Muons,
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
Muon cooling with Li lenses and high field solenoids V. Balbekov, MAP Winter Meeting 02/28-03/04, 2011 OUTLINE  Introduction: why the combination of Li.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
Project X Injector Experiment (PXIE) Sergei Nagaitsev Dec 19, 2011.
ERHIC design status V.Ptitsyn for the eRHIC design team.
Beam Dynamics and Linac Simulation Petr Ostroumov Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006.
FNAL 8 GeV SC linac / HINS Beam Dynamics Jean-Paul Carneiro FNAL Accelerator Physics Center Peter N. Ostroumov, Brahim Mustapha ANL March 13 th, 2009.
Overview and Status of the Fermilab High Intensity Neutrino Source R&D Program Giorgio Apollinari for Bob Webber.
Comparison of Fermilab Proton Driver to Suggested Energy Amplifier Linac Bob Webber April 13, 2007.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
Warm linac simulations (DTL) and errors analysis M. Comunian F. Grespan.
Project X: Accelerators Sergei Nagaitsev September 2, 2011.
Overview of long pulse experiments at NML Nikolay Solyak PXIE Program Review January 16-17, PXIE Review, N.Solyak E.Harms, S. Nagaitsev, B. Chase,
CW Linac (ICD-2+): Lattice Design in Project-X, Nikolay Solyak (on behalf of team: F.Ostiguy, J-P.Carneiro, N.Perunov, A.Vostrikov, A.Saini, V.Yakovlev,
N.Solyak (on behalf of PrX team) Fermilab Project X Collaboration Meeting, FNAL, Oct.25-27, 2011 N.Solyak, Pulsed Linac1 PrX Collab. Meeting, FNAL, Oct.25-27,
1 Project X Workshop November 21-22, 2008 Richard York Chris Compton Walter Hartung Xiaoyu Wu Michigan State University.
Linac Design: Single-Spoke Cavities.
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
Project X High Power 325 MHz RF Distribution and Control Alfred Moretti, Nov 12, 2007 Project X Workshop.
Dark Current in ILC Main Linac N.Solyak, A.Sukhanov, I.Tropin ALCW2015, Apr.23, 2015, KEK LCWS'15, Tsukuba, 04/2015Nikolay Solyak1.
Choppers Comparison of three schemes of choppers is made 2.5 MeV and 2.1 MeV beam energies are considered Presented by Boris Shteynas May,
Warm Front End Concept A. Shemyakin PIP-II Machine Advisory Committee 9-11 March 2015.
1 Superconducting linac design & associated MEBT Jean-Luc BIARROTTE CNRS-IN2P3 / IPN Orsay, France J-Luc Biarrotte, 1st Myrrha design review, Brussels,
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
CW Linac: Optics with Quads or Doublets. N. Perunov and N.Solyak Nov.6, 2009.
High Intensity Neutrino Source HINS Linac Front-End R&D --- Systems Integration, Beam Diagnostics Needs, and Meson Lab Setup Bob Webber.
One More RFQ Design Renewal ANL Design. Several MHz RFQ Designs ANL-1LBNL-1LBNL-2ANL-2aANL-2b Vane modulation typeSinusoidal Sinusoidal +
Bunch Shape Monitor for HINS Wai-Ming Tam Project X Collaboration Meeting September 11, 2009.
Overview of the RISP SCL
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
General Design of C-ADS Accelerator Physics
Positron capture section studies for CLIC Hybrid source - baseline
Physics design on the main linac
Progress in the Multi-Ion Injector Linac Design
Emanuele (ESS), Alessandro (CERN), Mikel (Tekniker), Hayley (ISIS)
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
1- Short pulse neutron source
XFEL Project (accelerator) Overview and recent developments
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Pulsed Ion Linac for EIC
MEBT1&2 design study for C-ADS
Physics Design on Injector I
The SPL-based Proton Driver at CERN
Status of the JLEIC Injector Linac Design
Update on ERL Cooler Design Studies
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

CW Linac Lattice August, 29 N.Solyak, B.Shteynas

Previous Baseline lattice Released March MeV; Chopper included; SSR0 (18 cav) not segmented, norm. emit.(x,y,z) = 0.25,0.25, 0275 mm*mrad -Good performances, robust to misalignment and components failure Several recent updates was studied: – Energy starts from 2.1 MeV – New segmentations of SSR0: 3*7 =21 cavities and 2*9=18 cavities, – Re-optimization of SSR2 section with beta=0.47 spoke cavity New lattice (3.9) includes all recently proposed changes (2.1 MeV): – SSR0 segmentation with missing solenoid: 2x9 cavities – Shorter SSR1 cryomodule (8 vs. 10 cavities) – Shorter SSR2 cryomodule (9 vs. 11 cavities) – Matched for lower emittances from Staples RFQ: 0.14,0.14, mm*mrad

New design: RFQ-MEBT-SSR0: 10 MeV acceleration 1σ envelopes Match from RFQ to chopper SSR0 (2x9cav) MEBT Chopper SRR0 Match to SRR0 Triplet focusing in Chopper and matching sections (+1 SC solenoid) Six RT 325 MHz bunching cavities in MEBT SSR0 is splitted in two ~5.1 m cryomodules with 9 cavities a 8 solenoids inside

ɛ n x,y,z = 0.139, 0.14, mm∙mmrad; Energy: 2.1 _> MeV; Current: Envelope X&Y (mm)- Z(mm) (chopper-front end) MEBT, Chopper SSR0 (2x9cav) SSR1(2x8cav) SSR2 (4x9cav) Missing solenoid Spoke cavity part of the Linac (up-to ~180 MeV) 2 shorter SSR1 CMs with 8 cavities/8solenois (vs. 10 in previous version) 4 shorter SSR2 CMs with 9 cav /5 solenoids (vs. 11cav/6 solenoids). beta=0.47 All spacing between CMs kept the same

Comparison of current design and version Section Freq, MHz Energy, MeVLength m Cav/mag/CM Period m CM Length* Type SSR – / 16 / SSR, solenoid SSR – / 16 / SSR, solenoid SSR2 (β=0.47) – / 20 / SSR, solenoid LB – / 14 / cell, doublet HB – / 19 / cell, doublet Section Freq, MHz Energy, MeV Length, m Cav/mag/CMType SSR – /18/1SSR, solenoid10.98 SSR – /20/2SSR, solenoid8 SSR2 (β=0.42) – /24/4SSR, solenoid8.84 LB – /14/75-cell, doublet7.1 HB – /19/195-cell, doublet11.2 Current variant (total length = 437 m, incl m MEBT) Lattice (total length = 444 m, incl m MEBT) Savings in cavities (current vs ): ΔSSR1 = 4; ΔSSR2= 8; Total savings: 12 cavities / 10 solenoids / 7 m of tunnel

Emittance: 0.139, 0.14, Energy: 2.1 MeV– 3064 MeV; Current: 5 Full lattice for 3 GeV Linac SSR0 SSR1 SSR2 LE650 (7CMs /6 cav) HE650, beta 0.9 (19 CMs with 8 cav)

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Phase advance Note: In chopper section used cavity period, not magnet

Emittance: 0.139, 0.14, mm*mrad, Energy: 2.1 MeV – 3064 MeV; Current: 5 Phase advance per meter

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Synchronous phase

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Emittances: Longitudinal (green), Transv. (pink)

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Envelope of 99% of long. emittance

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Sync. Phases vs. longitudinal beam size

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Surface magnetic field

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Cryogenic Losses

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Surface electric field

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Energy gain

Emittance: 0.139, 0.14, 0.217mm*mrad Energy: 2.1 MeV – 3064 MeV; Current: 5 Gradient

Back-up slides