Albert Oliver, Raúl Arasa, Agustí Pérez-Foguet, Mª Ángeles González HARMO17 Budapest May 2016 Simulating large emitters using CMAQ and a local scale finite element method. Analysis in the surroundings of Barcelona
HARMO17 · May 2016 · Budapest · 2 To Improve the prediction at fine scales: Large emitters Near source transport and chemistry Current approaches: Nested grid modelling Adaptive grid modelling Hybrid modelling Plume-in-grid modelling Statistical models CFDMotivation
HARMO17 · May 2016 · Budapest · 3 In this work we propose to compare two different approaches WRF-ARW/AEMM/CMAQ Nested grid modelling 1km – 300m Adaptive Finite Element method Plume-in-grid modelling Proposed approach
HARMO17 · May 2016 · Budapest · 4 Local FEM Mass consistent model (Wind) Plume rise (Briggs) Transport and reaction WRF-ARW/AEMM/CMAQ MeteorologyEmissions Transport reaction Proposed approach Initial and Boundary conditions
WRF-ARW/AEMM/CMAQ model Local scale Finite Element model Application to Barcelona surroundings Conclusions HARMO17 · May 2016 · Budapest · 5Outline
HARMO17 · May 2016 · Budapest · 6 The mesoscale meteorological model used is Weather Research and Forecasting—Advanced Research (WRF-ARW) version Specially suited to the subscale grid modelling Time-splitting methods, and high order (both time and space)WRF-ARW
HARMO17 · May 2016 · Budapest · 7 Air Emission Model of Meteosim (AEMM v3.0) developed by Meteosim S.L. Numerical, deterministic, Eulerian, local-scale model It allows to obtain the intensity of emissions in different areas, either anthropogenic (traffic, industry, residential, etc.) or natural (emissions caused by vegetation or erosion dust) for the area of interestAEMM
HARMO17 · May 2016 · Budapest · 8 CMAQ v5.0.1 CB-5 chemical mechanism AERO5 aerosol module EBI solver Discretization 1km The WRF-ARW/AEMM/CMAQ approach has been used successfully in urban areas (Catalonia, Madrid), industrial areas (Tarragona, Ponferrada), and arid areas (Perú, Chile)CMAQ
Convection-Diffusion-Reaction equation Wind field Plume rise FEM discretization Adaptivity HARMO17 · May 2016 · Budapest · 9 Adaptive Finite Element Method
Convection – diffusion – reaction equation A. Oliver et al. Adaptive Finite Element Simulation of Stack Pollutant Emissions over Complex Terrains. Energy Adaptive finite element method HARMO17 · May 2016 · Budapest · 10
Interpolate Wind field from WRF-ARW Mass-consistent model Wind field HARMO17 · May 2016 · Budapest · 11
Briggs equations Buoyancy Momentum HARMO17 · May 2016 · Budapest · 12 Plume rise
Temporal discretization: Crank-Nicolson Spatial discretization: Least Squares FEM System solver: Conjugate gradient preconditioned with an Incomplete Cholesky Factorization FEM discretization HARMO17 · May 2016 · Budapest · 13
HARMO17 · May 2016 · Budapest · 14 Mesh adaptation Mesh is only adapted to topography and plume rise Necessity to adapt to the solution Error indicator using log (wide range of solutions) Mesh refinement fixing a minimum size L. Monforte and A. Pérez-Foguet. A multimesh adaptive scheme for air quality modeling with the finite element method. Int. J. Numer. Meth. Fluids 2014Adaptivity
Barcelona surroundings HARMO17 · May 2016 · Budapest · 15Application
HARMO17 · May 2016 · Budapest · 16 Barcelona surroundings CMAQ nested domainsResults
HARMO17 · May 2016 · Budapest · 17Results Zoom of the nested domain
HARMO17 · May 2016 · Budapest · 18 Day: 2/12/2013 High concentration levels Simulation 48h (24h spin up) CMAQ grid resolution 1km, 32 layers FEM domain 20x20km, resolution from 1km to ~1mResults
HARMO17 · May 2016 · Budapest · 19 FEM Mesh
HARMO17 · May 2016 · Budapest · 20 FEM Mesh
HARMO17 · May 2016 · Budapest · 21 Max. 1h levels FEM CMAQ
HARMO17 · May 2016 · Budapest · 22 Measurement stations
HARMO17 · May 2016 · Budapest · 23 Near emitter station
HARMO17 · May 2016 · Budapest · 24 Near emitter station Streamlines from the emitter
Hour description of wind not enough HARMO17 · May 2016 · Budapest · 25 Near emitter station Streamlines from the emitter
HARMO17 · May 2016 · Budapest · 26 Near emitter station
HARMO17 · May 2016 · Budapest · 27 Station distant to the emitter
HARMO17 · May 2016 · Budapest · 28 Station distant to the emitter
HARMO17 · May 2016 · Budapest · 29 Combination of a nested grid and a local scale finite element model is a promising approach The WRF-ARW/AEMM/CMAQ system using a 1km grid captures the observed data far from the emitter Near the emitter, the finite element model is closer to the measured data, while far from the emitter the CMAQ-ARW model is better.Conclusions
HARMO17 · May 2016 · Budapest · 30 Use an smaller resolution for the wind field in the local scale model. Explore how to combine both models, operationally, in a hybrid model. Future work