C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa XII WORKSHOP.

Slides:



Advertisements
Similar presentations
With F. Aguila (Granada) and M. Pérez-Victoria (CERN), ’03-’06 Effective Description of Brane Terms in Extra Dimensions José Santiago Theory Group (FNAL)
Advertisements

QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa VIII SILAFAE.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
Chiral Dynamics How s and Why s 3 rd lecture: the effective Lagrangian Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town PION & NUCLEON FORM FACTORS IN (NON-PERTURBATIVE) QCD UTFSM 2008.
Chiral Dynamics How s and Why s 1 st lecture: basic ideas Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
The chiral partner of the nucleon in the mirror assignment University Frankfurt Susanna Wilms in collaboration with: Francesco Giacosa and.
Field redefinitions and RGE in R  T J. J. Sanz Cillero Field redefinitions and renormalization group equations in R  T J.J. Sanz-Cillero ( UAB – IFAE.
Understanding the QGP through Spectral Functions and Euclidean Correlators BNL April 2008 Angel Gómez Nicola Universidad Complutense Madrid IN MEDIUM LIGHT.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Beta-function as Infrared ``Phenomenon” RG-2008 (Shirkovfest) JINR, Dubna, September Oleg Teryaev JINR.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Denis Parganlija, A Linear Sigma Model with Vector Mesons and Global Chiral Invariance Denis Parganlija In collaboration with Francesco Giacosa,
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Limitations of Partial Quenching Stephen Sharpe and Ruth Van de Water, University of Washington, Seattle QCD with 3 flavors (u, d, s) possesses an approximate.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #4.
Nucleon Polarizabilities: Theory and Experiments
A chiral model for low-energy hadrons Francesco Giacosa In collaboration with Achim Heinz, Stefan Strüber, Susanna Gallas, Denis Parganlija and Dirk Rischke.
BELARUSIAN STATE UNIVERSITY The Actual Problems of Microworld Physics Gomel, July 27- August 7 Max Planck Institute for Nuclear Physics Regularization.
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
1 Why Does the Standard Model Need the Higgs Boson ? II Augusto Barroso Sesimbra 2007.
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Can a R  T be a renormalizable theory ? J.J. Sanz-Cillero Can a resonance chiral theory be a renormalizable theory ? J.J. Sanz-Cillero (Peking U.)
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
ANALYTIC APPROACH TO CONSTRUCTING EFFECTIVE THEORY OF STRONG INTERACTIONS AND ITS APPLICATION TO PION-NUCLEON SCATTERING A.N.Safronov Institute of Nuclear.
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Convergence of chiral effective theory for nucleon magnetic moments P. Wang, D. B. Leinweber, A. W. Thomas, A. G. Williams and R. Young.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar,
Chiral Extrapolations of light resonances
Resonance saturation at next-to-leading order
-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter
Lattice College of William and Mary
Joe Kapusta* University of Minnesota
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
Chapter V Interacting Fields Lecture 1 Books Recommended:
mesons as probes to explore the chiral symmetry in nuclear matter
Nuclear Forces - Lecture 3 -
Weak Interacting Holographic QCD
National Taiwan University
Hadrons and Nuclei : Chiral Symmetry and Baryons
Aspects of the QCD phase diagram
Unstable particles, EFTs, -resonance magnetic moment
GAUGE MODEL OF UNPARTICLES Discovering the Unexpected
Spontaneous P-parity breaking in QCD at large chemical potentials
Adnan Bashir, UMSNH, Mexico
Thermodynamics of the 2+1D Gross-Neveu model
The Operator Product Expansion Beyond Perturbation Theory in QCD
GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES
Nuclear Forces - Lecture 5 -
Hyun Kyu Lee Hanyang University
Dilaton in Baryonic Matter
A possible approach to the CEP location
Pion Physics at Finite Volume
The future of lattice studies in Korea
Theory on Hadrons in nuclear medium
Presentation transcript:

C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa XII WORKSHOP ON PARTICLES & FIELDS MAZATLAN NOVEMBER 2009 ELECTROMAGNETIC AND HADRONIC FORM FACTORS IN RENORMALIZABLE QUANTUM FIELD THEORIES

AD-HOC MODELS FOR FORM FACTORS NO SYSTEMATIC IMPROVEMENT SYSTEMATIC IMPROVEMENT: PERTURBATIVE CALCULATIONS IN RENORMALIZABLE QUANTUM FIELD THEORIES

1) Kroll – Lee – Zumino QFT 2) QCD ∞ : QCD IN THE LIMIT N c → ∞

Kroll – Lee – Zumino QFT RENORMALIZABLE QFT PLATFORM (  &  0 ) TO JUSTIFY VECTOR MESON (RHO) DOMINANCE (K,L,Z, 1967) ALLOWS FOR A SYSTEMATIC & MEANINGFUL PERTURBATIVE EXPANSION BEYOND THE LEADING (TREE-LEVEL) ORDER ELECTROMAGNETIC FORM FACTORS OF π & SCALAR FORM FACTOR OF π (chiral perturbation theory) (CAD, Jottar, Loewe, Willers, 2007,2008)

 PT  KLZ  QCD

VECTOR MESON DOMINANCE Abelian, TREE-LEVEL model No truly QFT platform Not subject to PERTURBATION THEORY improvement

CALCULATING IN KLZ Regularization using DIMENSIONAL REGULARIZATION Renormalization (fields, masses, couplings) Renormalization subtraction point for vertex diagram: q 2 = 0 Renormalization subtraction point for vacuum polarization diagram: q 2 = M 2 ρ

SCALAR FORM FACTOR OF THE PION  CHIRAL PERTURBATION THEORY

CHIRAL PERTURBATION THEORY  QCD SHARE THE SAME GLOBAL GAUGE SYMMETRIES  PT provides effective Lagrangian for QCD at low energies (near threshold) AT NLO AND BEYOND  LEC’s  l 4 NOT MEASURABLE

@ NLO IN KLZ = 0.4 fm 2, l 4 = 3.4, F  /F = 1.05 LATTICE QCD: l 4 = 3.6 – 5.0 NNLO IN KLZ ???

KLZ RENORMALIZABLE QFT PLATFORM TO EXTEND VMD BEYOND THE LEADING ORDER IN PERTURBATION THEORY A SENSIBLE PERTURBATIVE EXPANSION g   6 & (g  / 4  ) 2  0.2  PT  KLZ  QCD

QCD ∞ Lim N c → ∞ (N c = 3) ( t’Hooft ’74 & Witten ’79) Spectrum: ∞ number of zero width resonances Im G M2M2

QCD IN THE LIMIT N c → ∞ INFINITE NUMBER OF 0-WIDTH RESONANCES NEEDS A REALIZATION (MODEL) FOR HADRONIC MASSES & COUPLINGS DUAL-RESONANCE MODEL (VENEZIANO) DUAL QCD  PION, NUCLEON, DELTA FORM FACTORS CORRECTIONS DUE TO FINITE WIDTH (  /M)

Real Spectral Function Im G E2E2

CORRECTIONS to 1/N c  / M  10 %

Dual - QCD ∞ Dual Resonance Model Veneziano (1968) ∞ number of zero width resonances, equally spaced Masses & couplings fixed to give an Euler Beta Function

Nucleon Form Factors Dual-Large N c QCD F 1 (q 2 ) F 2 (q 2 ) G M (q 2 ) G E (q 2 ) G E (q 2 ) / G M (q 2 )

FORM FACTORS OF Δ(1236) G * M (q 2 ), G * E (q 2 ), G * C (q 2 )

DUAL QCD  DUAL RESONANCE MODEL (VENEZIANO) M N & g n A SINGLE FREE PARAMETER (q 2 < 0) UNITARIZATION (q 2 > 0) OTHER APPLICATIONS ???