Projective 2D geometry course 2 Multiple View Geometry Comp 290-089 Marc Pollefeys.

Slides:



Advertisements
Similar presentations
Projective 3D geometry class 4
Advertisements

Epipolar Geometry.
Invariants (continued).
1 A camera is modeled as a map from a space pt (X,Y,Z) to a pixel (u,v) by ‘homogeneous coordinates’ have been used to ‘treat’ translations ‘multiplicatively’
3D reconstruction.
Primitives Behaviour at infinity HZ 2.2 Projective DLT alg Invariants
Recovery of affine and metric properties from images in 2D Projective space Ko Dae-Won.
Projective Geometry- 3D
Recovering metric and affine properties from images
Epipolar Geometry class 11 Multiple View Geometry Comp Marc Pollefeys.
Camera Models A camera is a mapping between the 3D world and a 2D image The principal camera of interest is central projection.
Structure from motion.
Recovering metric and affine properties from images
Multiple View Geometry Projective Geometry & Transformations of 2D Vladimir Nedović Intelligent Systems Lab Amsterdam (ISLA) Informatics Institute,
1 Basic geometric concepts to understand Affine, Euclidean geometries (inhomogeneous coordinates) projective geometry (homogeneous coordinates) plane at.
The 2D Projective Plane Points and Lines.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Projective 2D & 3D geometry course 2
Geometry of Images Pinhole camera, projection A taste of projective geometry Two view geometry:  Homography  Epipolar geometry, the essential matrix.
3D reconstruction class 11
Projective 2D geometry (cont’) course 3
Used slides/content with permission from
Parameter estimation class 5 Multiple View Geometry Comp Marc Pollefeys.
Projective geometry- 2D Acknowledgements Marc Pollefeys: for allowing the use of his excellent slides on this topic
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Uncalibrated Geometry & Stratification Sastry and Yang
Multiple View Geometry
Projective 2D geometry Appunti basati sulla parte iniziale del testo
Projective 3D geometry. Singular Value Decomposition.
Homogeneous coordinates
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
3D photography Marc Pollefeys Fall 2007
Projective Geometry and Camera model Class 2
Camera Models class 8 Multiple View Geometry Comp Marc Pollefeys.
 -Linearities and Multiple View Tensors Class 19 Multiple View Geometry Comp Marc Pollefeys.
More on single-view geometry class 10 Multiple View Geometry Comp Marc Pollefeys.
The Image Formation Pipeline
3D photography Marc Pollefeys Fall 2004 / Comp Tue & Thu 9:30-10:45
Camera Calibration class 9 Multiple View Geometry Comp Marc Pollefeys.
Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys.
The Trifocal Tensor Class 17 Multiple View Geometry Comp Marc Pollefeys.
Project Geometry Jiecai He (Jake)
Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys.
Projective Geometry and Camera Models
Projective Geometry and Geometric Invariance in Computer Vision Babak N. Araabi Electrical and Computer Eng. Dept. University of Tehran Workshop on image.
875: Recent Advances in Geometric Computer Vision & Recognition Jan-Michael Frahm Fall 2011.
Robot Vision SS 2008 Matthias Rüther 1 ROBOT VISION Lesson 2: Projective Geometry Matthias Rüther Slides courtesy of Marc Pollefeys Department of Computer.
Projective cameras Motivation Elements of Projective Geometry Projective structure from motion Planches : –
Homogeneous Coordinates (Projective Space) Let be a point in Euclidean space Change to homogeneous coordinates: Defined up to scale: Can go back to non-homogeneous.
Projective Geometry. Projection Vanishing lines m and n.
Projective geometry ECE 847: Digital Image Processing Stan Birchfield Clemson University.
Projective 3D geometry class 4
Single View Geometry Course web page: vision.cis.udel.edu/cv April 9, 2003  Lecture 20.
Two-view geometry Epipolar geometry F-matrix comp. 3D reconstruction
Multi-linear Systems and Invariant Theory in the Context of Computer Vision and Graphics CS329 Amnon Shashua.
Projective Geometry Hu Zhan Yi. Entities At Infinity The ordinary space in which we lie is Euclidean space. The parallel lines usually do not intersect.
1 Overview Introduction to projective geometry 1 view geometry (calibration, …) 2-view geometry (stereo, motion, …) 3- and N-view geometry Autocalibration.
Parameter estimation class 5 Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp
Projective 2D geometry (cont’) course 3 Multiple View Geometry Modified from Marc Pollefeys’s slides.
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
Homogeneous Coordinates (Projective Space)
Parameter estimation class 5
Epipolar geometry.
Epipolar Geometry class 11
CS Visual Recognition Projective Geometry Projective Geometry is a mathematical framework describing image formation by perspective camera. Under.
More on single-view geometry class 10
Study the mathematical relations between corresponding image points.
Multiple View Geometry Comp Marc Pollefeys
3D reconstruction class 11
Presentation transcript:

Projective 2D geometry course 2 Multiple View Geometry Comp Marc Pollefeys

Content Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation. Single View: Camera model, Calibration, Single View Geometry. Two Views: Epipolar Geometry, 3D reconstruction, Computing F, Computing structure, Plane and homographies. Three Views: Trifocal Tensor, Computing T. More Views: N-Linearities, Multiple view reconstruction, Bundle adjustment, auto- calibration, Dynamic SfM, Cheirality, Duality

Points, lines & conics Transformations & invariants 1D projective geometry and the Cross-ratio Projective 2D Geometry

Homogeneous coordinates Homogeneous representation of lines equivalence class of vectors, any vector is representative Set of all equivalence classes in R 3  (0,0,0) T forms P 2 Homogeneous representation of points on if and only if The point x lies on the line l if and only if x T l = l T x = 0 Homogeneous coordinates Inhomogeneous coordinates but only 2DOF

Points from lines and vice-versa Intersections of lines The intersection of two lines and is Line joining two points The line through two points and is Example

Ideal points and the line at infinity Intersections of parallel lines Example Ideal points Line at infinity tangent vector normal direction Note that in P 2 there is no distinction between ideal points and others

A model for the projective plane exactly one line through two points exaclty one point at intersection of two lines

Duality Duality principle: To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

Conics Curve described by 2 nd -degree equation in the plane or homogenized or in matrix form with 5DOF:

Five points define a conic For each point the conic passes through or stacking constraints yields

Tangent lines to conics The line l tangent to C at point x on C is given by l=Cx l x C

Dual conics A line tangent to the conic C satisfies Dual conics = line conics = conic envelopes In general ( C full rank):

Degenerate conics A conic is degenerate if matrix C is not of full rank e.g. two lines (rank 2) e.g. repeated line (rank 1) Degenerate line conics: 2 points (rank 2), double point (rank1) Note that for degenerate conics

Projective transformations A projectivity is an invertible mapping h from P 2 to itself such that three points x 1,x 2,x 3 lie on the same line if and only if h(x 1 ),h(x 2 ),h(x 3 ) do. Definition: A mapping h : P 2  P 2 is a projectivity if and only if there exist a non-singular 3x3 matrix H such that for any point in P 2 reprented by a vector x it is true that h(x)=Hx Theorem: Definition: Projective transformation or 8DOF projectivity=collineation=projective transformation=homography

Mapping between planes central projection may be expressed by x’=Hx (application of theorem)

Removing projective distortion select four points in a plane with know coordinates (linear in h ij ) (2 constraints/point, 8DOF  4 points needed) Remark: no calibration at all necessary, better ways to compute (see later)

More examples

Transformation of lines and conics Transformation for lines Transformation for conics Transformation for dual conics For a point transformation

A hierarchy of transformations Projective linear group Affine group (last row (0,0,1)) Euclidean group (upper left 2x2 orthogonal*scalar) Oriented Euclidean group (upper left 2x2 det 1) Alternative, characterize transformation in terms of elements or quantities that are preserved or invariant e.g. Euclidean transformations leave distances unchanged

Class I: Isometries (iso=same, metric=measure) orientation preserving: orientation reversing: special cases: pure rotation, pure translation 3DOF (1 rotation, 2 translation) Invariants: length, angle, area

Class II: Similarities (isometry + scale) also know as equi-form (shape preserving) metric structure = structure up to similarity (in literature) 4DOF (1 scale, 1 rotation, 2 translation) Invariants: ratios of length, angle, ratios of areas, parallel lines

Class III: Affine transformations non-isotropic scaling! (2DOF: scale ratio and orientation) 6DOF (2 scale, 2 rotation, 2 translation) Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Class VI: Projective transformations Action non-homogeneous over the plane 8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) Invariants: cross-ratio of four points on a line (ratio of ratio)

Action of affinities and projectivities on line at infinity Line at infinity becomes finite, allows to observe vanishing points, horizon, Line at infinity stays at infinity, but points move along line

Decomposition of projective transformations upper-triangular, decomposition unique (if chosen s>0) Example:

Overview transformations Projective 8dof Affine 6dof Similarity 4dof Euclidean 3dof Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids). The line at infinity l ∞ Ratios of lengths, angles. The circular points I,J lengths, areas.

Number of invariants? The number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less than number of degrees of freedom of the transformation e.g. configuration of 4 points in general position has 8 dof (2/pt) and so 4 similarity, 2 affinity and zero projective invariants