TILC08, Sendai, March 2008 1 DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (www.depfet.org)

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
R&D Status of FPCCD Vertex Detector Dec.1, 2006 Yasuhiro Sugimoto KEK.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
1 Engineering issues for FPCCD VTX Detector Y. Sugimoto KEK July 24, 2007.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
J. Crooks STFC Rutherford Appleton Laboratory
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
ASIC Development for Vertex Detector ’07 6/14 Y. Takubo (Tohoku university)
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Spanish Linear Collider Meeting, Valencia, December 2012 Ladislav Andricek, MPI für Physik, HLL 1 DEPFET APS for future collider applications -Status and.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
On-Module Interconnection and CNM Projects DEPFET Meeting, Bonn, February Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples.
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
PXD ASIC Review, July 2015 Ladislav Andricek, MPG Halbleiterlabor Belle II PXD ASIC Review, the 2 nd …….. 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
1 Run on 25. October. 2 Full-size DCD Price: at least 32 k€ Return: April 201  Less test possibilities Full-size chip Wire-bondable DCD Price: 6.75 k€
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
The DEPFET for the ILC Vertex Detector
DEPFET Active Pixel Sensors (for the ILC)
Sensor Wafer: Final Layout
The Belle II Vertex Pixel Detector (PXD)
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
FPCCD Vertex Detector for ILC
Presentation transcript:

TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (

TILC08, Sendai, March The DEPFET ILC VTX Project DEPFET in a nutshell Summary of the current achievements New r/o chip DCD2 News on thinning/ladder design See DEPFET Backup Document at

TILC08, Sendai, March DEPFET Principle Drain Source Gate  fully depleted sensitive volume, charge collection by drift  internal amplification  q-I conversion: 0.5 nA/e, scales with gate length and bias current  Charge collection in "off" state, read out on demand J. Kemmer & G. Lutz, 1987 DEpleted P-channel FET

TILC08, Sendai, March DEPFET Array - read-out at the ILC Row wise read-out ("rolling shutter")  select row with external gate, read current, clear DEPFET, read current again  the difference is the signal  Low power consumption  two different auxiliary ASICs needed  limited frame rate  cap. load at the f/e adds noise Drain read out

TILC08, Sendai, March ILC VXD baseline design Just as a starting point for the R&D!  5 layer, old TESLA layout  10 and 25 cm long ladders read out at the ends  24 micron pixel  design goal 0.1% X 0 per layer in the sens. region Strategy to cope with the background:  read ~20 times per train  store data on ladder  transfer the data off ladder in the train pause  row rate of 40 MHz  read two rows in parallel, doubles # r/o channels but:  row rate 20 MHz

TILC08, Sendai, March ILC Prototype System 2 analog MUX outputs with 64 channels each Can switch up to 25 V 0.8µm AMS HV technology Clear Switcher Gate Switcher DEPFET Matrix 64x128 pixels, 33 x 23.75µm 2 current based 128 channel readout chip 50 MHz band width in the f/e On-chip pedestal subtraction by switched current technique (CDS) Current Readout CUROII

TILC08, Sendai, March New rad. hard Switcher3 chips tested and functional Production of 2nd iteration of DEPFETs under test New r/o chips DCD designed for read-out of large matrices are under test Prototype System with DEPFETs (450µm), CURO and Switcher test CERN: 450 µm  goal S/N ≈ 50 µm sample-clear-sample 320 ns  goal 50 ns s.p. res µm  goal ≈ 4 50 µm Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 µm … ~100 µm) radiation tolerance tested with single pixel structures up to 1 Mrad and ~10 12 n eq /cm 2 Simulations show that the present DEPFET concept can meet the challenging requirements at the ILC VXD. In Summary: Achievements and status

TILC08, Sendai, March New DEPFET Generation ‘PXD5’  Mostly use ‘baseline’ linear DEPFET geometry  Build larger matrices Long matrices (full ILC drain length) Wide matrices (full Load for Switcher Gate / Clear chips)  Try new DEPFET variants: reduce clear voltages Very small pixels (20µm x 20µm)  Increase internal amplification (g q ) 512x512 matrix  Production finished  Currently under test and evaluation  beam test in July and August a PS and SPS (stand-alone and EUDET)  expect first results from Lab test at the Warsaw meeting

TILC08, Sendai, March A new r/o chip - DCD2 DCD: Drain Current Digitizer -: improved input cascode (regulated) and current memory cells -: digital hit processing done with 2nd chip/FPGA -: designed for 40 pF load at the input (1 st layer ILC VTX) -: f/e noise: add 37nA for memory cells   at 40pF with g q =500pA/e  100 e- ENC in total -: 2 current based ADCs per pixel, 8 bit -: layout for bump bonding, rad. hard design -: UMC 0.18µm, 1.8V technology -: 144 channels -: outer dimensions 3.2x1.5 mm 2

TILC08, Sendai, March DCD2 - first test results Pixel Control Registers ok DACs & DAC Control registers ok Current consumption ok Regulated cascode ok ADCs of top row ok LVDS in and out ok Output multiplexer not tested yet  extremely good news!!!  next step is to test the chip with mini matrices of the PXD5 DEPFET production………

TILC08, Sendai, March Thinning Technology Compatibility with the main production line tested So far: -: mechanical samples -: test structures (diodes) on SOI wafers The technology found its way into other projects: -: production of thin (75 and 150 μm) ATLAS pixel sensors for sLHC -: first production of Geiger-mode APDs on 70 μm top layer Top Wafer Handle Wafer a) oxidation and back side implant of top wafer b) wafer bonding and grinding/polishing of top wafer c) process  passivation open backside passivation d) anisotropic deep etching opens "windows" in handle wafer

TILC08, Sendai, March Thinning : mechanical samples

TILC08, Sendai, March Bow under gravity Bill Cooper, Fermilab

TILC08, Sendai, March Flatness!!!??  "all-Silicon" module? - Not really.. MaterialSiSiO 2 Si 3 N 4 Al Thickness (µm) ≈ CTE (ppm/K)2.6≈ 0.5≈  Build-in stress due to high temperature processes!  Wafer/Sensor bow! 1. Does it change with temperature (∆T ≈ 40 K) after processing/dicing? 2. If it's stable, is it of concern at all? (3. Can the build-in stress (and bow) be adjusted with additional single sided layers?)  First assesment: -: 1 st layer ladder with single sided double metal (Al-600nm SiO 2 -Al on front side) diced!  Measure bow and temp. dependence at RAL (Erik Johnson)

TILC08, Sendai, March Bow vs. Temperature (at RAL) measure flatness down to -24 degC: -: max. +/- 12 µm at ∆T=44K -: small effect at 20degC  -10degC -: these are just first results, more tests underway (many thanks to Erik and RAL!) double metal sample, 1st layer ILD ladder, 50µm thick

TILC08, Sendai, March Summary Preparations for the new DEPFET generation are in full swing: New Sensors, larger matrices, with improved gain under test New r/o chip operational Thinning technology at the door step to migrate to the production line. Excellent results using a commercial supplier for the engineered SOI wafers.... It remains a challenging task but we don't see any show stoppers and are on schedule for a thin "full size" demonstrator by ~2010!