Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.

Slides:



Advertisements
Similar presentations
Normal metal - superconductor tunnel junctions as kT and e pumps
Advertisements

Coherent oscillations in superconducting flux qubit without microwave pulse S. Poletto 1, J. Lisenfeld 1, A. Lukashenko 1 M.G. Castellano 2, F. Chiarello.
Superconducting qubits
Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY.
Low frequency noise in superconducting qubits
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
High-Fidelity Josephson qubit gates – winning a battle against decoherence “Quantum Integrated Circuit” – scalable New breakthroughs: Improved fidelity.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
Entanglement and Quantum Correlations in Capacitively-coupled Junction Qubits Andrew Berkley, Huizhong Xu, Fred W. Strauch, Phil Johnson, Mark Gubrud,
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Josephson Junction based Quantum Control Erick Ulin-Avila Seth Saltiel.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Josephson Junctions, What are they?
Readout of superconducting flux qubits
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
Quantenelektronik 1 Application of the impedance measurement technique for demonstration of an adiabatic quantum algorithm. M. Grajcar, Institute for Physical.
Quantum Computing with Superconducting Circuits Rob Schoelkopf Yale Applied Physics QIS Workshop, Virginia April 23, 2009.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
SQUID Based Quantum Bits James McNulty. What’s a SQUID? Superconducting Quantum Interference Device.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
1 0 Fluctuating environment -during free evolution -during driven evolution A -meter AC drive Decoherence of Josephson Qubits : G. Ithier et al.: Decoherence.

Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
Bloch band dynamics of a Josephson junction in an inductive environment Wiebke Guichard Grenoble University –Institut Néel In collaboration with the Josephson.
Superconducting qubits
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
Dynamics of a Resonator Coupled to a Superconducting Single-Electron Transistor Andrew Armour University of Nottingham.
SPEC, CEA Saclay (France),
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
M.T. Bell et al., Quantum Superinductor with Tunable Non-Linearity, Phys. Rev. Lett. 109, (2012). Many Josephson circuits intended for quantum computing.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Single-shot read-out of one electron spin
Quantum measurement and superconducting qubits Yuriy Makhlin (Landau Institute) STMP-09, St. Petersburg 2009, July 3-8.
Meet the transmon and his friends
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Macroscopic quantum dynamics in superconducting nanocircuits Jens Siewert Institut für Theoretische Physik, Universität Regensburg, Germany Imperial College,
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
Spin Readout with Superconducting Circuits April 27 th, 2011 N. Antler R. Vijay, E. Levenson-Falk, I. Siddiqi.
DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Measuring Quantum Coherence in the Cooper-Pair Box
Charge pumping in mesoscopic systems coupled to a superconducting lead
2 Qubits: Coupled pair of DQD. Physical system and effective Hamiltonian Electrostatic coupling between DQD1 and DQD2.
The rf-SQUID Quantum Bit
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Superconducting Qubits
Design and Realization of Decoherence-Free
Strong coupling of a superradiant spin ensemble B. C. Rose, A. M
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
Josephson Flux Qubits in Charge-Phase Regime
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Emile Hoskinson Scientific collaborations: PTB Braunschweig ( Germany) LTL Helsinki (Finland) KTH Stockholm (Sweden) Rutgers, New Jersey

Research Topics  dc IxIx  (t) Quantum dynamics of an anharmonic oscillator (DC SQUID) Phase qubit Rhombi chain: A novel topologically protected qubit Phase qubit coupled to a charge qubit: Tunable coupling Vg2 Vg1 Cooper pair pumping through a double Island

 RF IpIp  DC  nano dc SQUID as a quantum anharmonic oscillator P = +6 dBm    = 260 MHz T mw (ns) P esc Rabi like oscillations:  1 /2  (MHz) R (MHz) 2-level # involved levels  p (I b,  b )  U (I b,  b ) 10 GHz ~ 500 mK Cross-over macroscopic regime Quantum measurements PRB 76, (2007) Decoherence processes PRB 73, (2006) Coherent oscillations PRL (2004) Cond-mat T 2,Rabi =25ns

dc SQUID as a phase qubit  1 /2  (arb. units) R (MHz) T mw (ns) P esc 1) MW excitation I MW on current bias line 2) Quantum measurement: nanosecond flux pulse projects qubit states onto SQUID flux states. |0> |1> 3) Read out: voltage switching using a slow current pulse     qubit Flux state New experimental procedure at zero current bias: Nb Two level limits Anharmonicity~300MHz (collaboration with PTB-Germany) T 1 ~100ns E. Hoskinson unpublished

Two quantum systems |0  |1  |2  MW  p (I p,  dc )  U (I p,  dc )  VgVg SQUID dc ACPT Phase qubit charge-phase qubit

Asymmetric Cooper pair transistor (Charge qubit) Superconducting island ~ 0.06  m 2 Gate V G I bias Coupled circuit dc SQUID (Phase qubit) SQUID Josephson junction size~ 10  m² Transistor Josephson junction size~ 0.02  m²

Spectroscopy measurement of the two quantum systems SQUID CPT

Resonant read out of the charge qubit Microwave VGVG  A. Fay unpublished

Tunable coupling r = 10.4 GHz g = 0.9 GHz g = 115 MHz r = GHz A. Fay unpublished

Rhombi chain: a novel topologically protected qubit At  =0.5  0 B. Doucot et al., Phys. Rev B 71, (2005) I.Protopopov et al., Phys. Rev B 74, (2006) L.Ioffe et al. Nature, 415, 503, (2002) N Rhombi  E  /2 -  /2

Switching current measurement S = 618 μm 2 s = 6,98 μm 2 S G = 605 μm 2 s G = 6,84 μm 2 Magnetic field (Gauss) Critical current (nA) E J /E C =2

Switching current measurements B. Pannetier et al. to be published E J /E C ~20 At E J /E C ~2

Conclusion -Quantum dynamics of an anharmonic oscillator in a DC SQUID -Phase qubit -Tunable coupling between a charge qubit coupled and a phase qubit - Rhombi chain: topologically protected qubit