Igor Lukyanchuk Amiens University

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

Nernst-Ettingshausen effect in graphene Andrei Varlamov INFM-CNR, Tor Vergata, Italy Igor Lukyanchuk Universite Jules Vernes, France Alexey Kavokin University.
Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Solid state midterm report Quantum Hall effect g Chienchung Chen.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
RAMAN SPECTROSCOPY Scattering mechanisms
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
Physics of Graphene* Igor Lukyanchuk * Monolayer of Graphite, synthesized in 2005, " new wave " in cond-mat physics (>700 publications) L.D.Landau Inst.
Interlayer tunneling spectroscopy of NbSe 3 and graphite at high magnetic fields Yu.I. Latyshev Institute of Raduio-Engineering and Electronics RAS, Mokhovaya.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
Electronic properties and the quantum Hall effect in bilayer graphene Vladimir Falko.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Hofstadter’s Butterfly in the strongly interacting regime
Quantized Hall effect. Experimental systems MOSFET’s (metal- oxide-semiconductor- field-effect-transistor.) Two-dimensional electron gas on the “capacitor.
07/11/11SCCS 2008 Sergey Kravchenko in collaboration with: PROFOUND EFFECTS OF ELECTRON-ELECTRON CORRELATIONS IN TWO DIMENSIONS A. Punnoose M. P. Sarachik.
Vladimir Cvetković Physics Department Colloquium Colorado School of Mines Golden, CO, October 2, 2012 Electronic Multicriticality In Bilayer Graphene National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Electrons in Solids Carbon as Example
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Dirac fermions in Graphite and Graphene Igor Lukyanchuk Amiens University I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, (2004) - Phys.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
A Critical Look at Criticality AIO Colloquium, June 18, 2003 Van der Waals-Zeeman Institute Dennis de Lang The influence of macroscopic inhomogeneities.
Graphene - Electric Properties
Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.
Graphene bipolar heterojunctions SD LG V BG C BG C LG V LG V SD -Density in GLs can be n or p type -Density in LGR can be n’ or p’ type We expect two Dirac.
Lesson 6 Magnetic field induced transport in nanostructures.
The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility.
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
University of Washington
Dirac’s inspiration in the search for topological insulators
Flat Band Nanostructures Vito Scarola
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Tunable excitons in gated graphene systems
Review on quantum criticality in metals and beyond
Igor Luk’yanchuk, Yakov Kopelevich
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
4H-SiC substrate preparation - graphitization
Topological Insulators
Band structure: Semiconductor
"Grafeno : Prêmio Nobel em Física de 2010 e Perspectivas Tecnológicas“
Optical signature of topological insulator
Nonlinear response of gated graphene in a strong radiation field
Evidence for the chiral anomaly in the Dirac semimetal Na3Bi
Michael Fuhrer Director, FLEET Monash University
FSU Physics Department
Observation of Intrinsic Quantum Well States and
Ady Stern (Weizmann) The quantum Hall effects – introduction
Evidence for a fractional fractal quantum Hall effect in graphene superlattices by Lei Wang, Yuanda Gao, Bo Wen, Zheng Han, Takashi Taniguchi, Kenji Watanabe,
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Fig. 1 General characterizations of Bi2O2Se single crystals.
Presentation transcript:

Igor Lukyanchuk Amiens University Quantum Oscillations and Magnetic Properties of Graphene-related nanostructures How to identify Dirac Fermions ???

Graphite …

Unusual electronic phenomena in Graphite Y. Kopelevich et al. Phys. Rev. Lett. 87, 147001 (2001) 93, 166402 (2004) Weak ferromagnetism MIT transition Linear magnetoresistance (old problem) Quantum Hall 35K Superconductivity in Graphite-S

(2D graphite monolayer, Semimetal) Graphene: (2D graphite monolayer, Semimetal) Brillouin zone Special points of Brillouin zone Linear Dirac spectrum 4-component (Dirac) wave function

Graphite: Band structure: Slonczewski-McClure Model Fitting parameters

holes Is it real ???? electrons

Problems with band interpretation Sh > Se Problems with band interpretation 1) Se > Sh 2) H: point Dirac Spectrum Phase volume ~0 holes no Dirac Fermions should be seen in experiment Normal Spectrum electrons Another possibility: Independent layers ???

ρc/ ρa > 50000 (instead of 300 in Kish) ρa ~ 3 μΩ cm (300K) ρ(T), HOPG In best samples ρc/ ρa > 50000 (instead of 300 in Kish) ρa ~ 3 μΩ cm (300K) n3D~3x1018 cm-3 n2D~1011 cm-2 (1012-1013 in Graphene) Mobility: μ~107cm2/Vs (105 in Graphene) Metals: 300μΩ cm, Ioffe-Regel 1000 μΩ cm

Dirac Fermions vs Normal Carriers ? Graphite: 2D vs 3D ? Dirac Fermions vs Normal Carriers ? Tools: Quantum oscillations I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev. Lett. 97, 256801 (2006)

Landau quantization: Normal vs Dirac Normal electrons ‘’gap’’ Dirac electrons no ‘’gap’’ !!!

F Magnetic Quantum oscillations ► Susceptibility (H) : de Haas–van Alphen (dHvA) etc… …due to Landau quantization of Density of States Clean 2D Quasi 2D 3D or dirty t,  hc F H

Transport properties: Shubnikov de Haas (SdH) oscillations ► Hall Resistance Rxy(H) : In-field resistivity measurements… In bulk sample ► Resistance Rxx(H) In 2D film: Quantum Hall effect

and Phase ??? … difficult to extract Quantum oscillations: What is usually studied ? Profile: Information about e-e interaction (in 2D) Damping: Information about e-scattering (Dingle factor G ) Period: Information about Fermi surface cross section S(e) and Phase ??? … difficult to extract We propose the method.!!!

► 2D + 3D case, normal spectrum dHvA oscillations ► 3D case, arbitrary spectrum ► 2D case, normal spectrum ► 2D + 3D case, normal spectrum ► 2D case, Dirac spectrum

g is extracted from phase !!! More general… 3D spectrum, model In terms of extremal cross sections ( arbitrary ) Bohr-Sommerfeld quantization Topological index : Mikitik, Sharlai, Phys. Rev. Lett. 82, 2147 (1999) ► for Normal electrons g is extracted from phase !!! ► for Dirac electrons

Generalized formula: 2D, 3D, arbitrary spectrum I. Luk’yanchuk and Y. Kopelevich Phys. Rev. Lett. 93, 166402 (2004) where Normal: Dirac: Fermi surface cross section Limit cases 3D : => Lifshitz-Kosevich => Shoenberg 2D :

{ { SdH: Oscillations of xx (H) (1st harmonic) Phase depends on : Normal:  = 1/2 Dirac:  = 0 ► Spectrum : { 2D:  = 0 3D:  = ± 1/8 ► Dimensionality : { dHvA: Oscillations of  (H) (1st harmonic)

Quantum oscillations in Graphite Resistance Rxy (H) Susceptibility c(H) T. Berlincourt et al. Phys. Rev. 98, 956 (1955) Hall effect Rxy(H) in 2D Graphene Hall effect Rxy(H) Y. Kopelevich et al. Phys. Rev. Lett. 90, 156402 (2003) Novoselov, K. S. et al. Nature 438, 197 (2005); Zhang, Y. et al. Nature 438, 201 (2005).

Quantum oscillations in Graphite: Fermi surface Y. Kopelevich high fields SdH spectrum dHvA low fields minority majority

Pass-band filtering Comparison of dHvA and SdH SdH dHvA dHvA SdH high fields spectrum electrons holes low fields holes (?)

Fan Diagram for SdH oscillations in Graphite Dirac Normal Novoselov, 2005 Multilayer 5nm graphite graphene

QHE and DF

2005: Discovery of Quantum Hall Effect in 2D Graphene Due to Dirac fermions … From: - phase analysis - semi-integerr QHE Novoselov, K. S. et al. Nature 438, 197 (2005); Zhang, Y. et al. Nature 438, 201 (2005).

sxy sxy QHE effect : Normal vs Dirac Normal electrons, Dirac- like electrons (expected for graphene) sxy 1 / H

« Dirac » QHE Hall effect in Graphene monolayer n Novoselov, K. S. et al. Nature 438, 197 (2005); Zhang, Y. et al. Nature 438, 201 (2005). « Dirac » QHE n

QHE effect in 2-layer graphite film (K.Novoselov et al, cond-mat 2005, Nature-Physics) -sxy 12T 1 / H « Normal » QHE due to normal electrons

Graphite, Quantum Hall Effect, different samples Kopelevich, (2003)

QHE: Graphite vs multi graphene HOPG, Y. Kopelevich et al. PRL´2003 QHE: Graphite vs multi graphene B0 = 4.68 T . Few Layer Graphite (FLG) K.S.Novoselov et al., Science´2004 B0= 20 T, = > n ~ 2x1012 cm-2

Filtering Normal (Integer QHE) GRAPHITE: Normal vs Dirac carriers separation Lukyanchuk, Kopelevich - Phys. Rev. Lett. 97, 256801 (2006) Rxy Dirac (Semi-integer QHE) Rxx Filtering B (T)

FQHE in Graphite

Rxy Rxx Rxy Rxy Rxx

Another manifestations of DF in Graphite

2006 Confirmation: Angle Resolved Photoemission Spectroscopy (ARPES) Dirac holes Normal electrons

Another confirmation of Dirac fermions: Dirac+Normal fermions in HOPG TEM results: C. Li and E. Andrei. 2007, Nature Phys.

Interlayer tunneling spectroscopy of Landau levels in graphite Yu. I. Latyshev1, A. P. Orlov1, V. A. Volkov1, A. V. Irzhak2, D. Vignolles3, J. Marcus4 and T. Fournier4

INFRARED SPECTROSCOPY

2006 Graphite, interpretation, ??? =>

RAMAN SPECTROSCOPY

Raman spectra of graphite double-resonant  graphite 2.33 eV D G D‘ G‘

RAMAN SPECTROSCOPY « Graphene Fingerprint »

HOPG-Graphite, Raman, Peak 2G I. Lukyanchuk, M. El Marssi, Y. Kopelevich Physica B, 2009 Trace of graphene

model

B As in bilayer ?

Nernst-Ettingshausen (NE) Quantum Oscillations Graphite, Graphene, Bismuth… Perpendicular magnetic field NE - effect Temperature gradient V, Potential difference

NE coefficient: Advantages: - oscillations have the thermodynamic origin, related with and - can be measured in films

NE oscillations, calculated from thermodynamics for:

Results: 2D 3D Giant !!! (even in 3D) Phase shift

As function of gate voltage … Normal Dirac …

EXPERIMENT Graphene, DF

Graphite, ?? Transport Nernst Giant (!), 3D (?), Phase ???

Bismuth Giant (!), 3D (?), Phase ???