Searches for Lorentz violation in 3 He/ 129 Xe clock comparison experiments Outline:  Features of frequency standards and clocks  3 He/ 129 Xe „spin“-clock.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Kiwoon Choi PQ-invariant multi-singlet NMSSM
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
Magnetic Resonance Imaging
String theoretic QCD axions in the light of PLANCK and BICEP2 (QCD axion after BICEP2) Kiwoon KIAS, May 1, 2014 KC, K.S. Jeong and M.S. Seo, arXiv:
Fundamental Physics Research in Space International Workshop Washington DC May 2006 Probing Relativity using Space-Based Experiments Neil Russell.
1 Test of fundamental symmetries Sumerian, 2600 B.C. (British Museum) With thanks to Antoine Weis from an atomic physics perspective Mike Tarbutt.
The Quantum Mechanics of MRI Part 1: Basic concepts
Why we need Lab Experiments to search for Alps Joerg Jaeckel 1 E. Masso, J. Redondo 2 F. Takahashi, A. Ringwald 1 1 DESY 2 Universitat Autonoma de Barcelona.
AN ANOMALOUS CURVATURE EXPERIMENT Carol Y. Scarlett Brookhaven National Laboratory Apr. 27 th, 2006.
Nuclear Physics UConn Mentor Connection Mariel Tader.
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
Structure Determination by NMR CHY 431 Biological Chemistry Karl D. Bishop, Ph.D. Lecture 1 - Introduction to NMR Lecture 2 - 2D NMR, resonance assignments.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
27 km ring Large Hadron Collider went online on Sept
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Symmetries and conservation laws
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.
Search for an Atomic EDM with
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
1 Martin L. Perl SLAC National Accelerator Laboratory Holger Mueller Physics Department, University California-Berkeley Talk.
Testing Relativity Theory With Neutrinos Brett Altschul University of South Carolina May 15, 2008.
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Phys 102 – Lecture 26 The quantum numbers and spin.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Absorption and Emission of Radiation:
Tests of Lorentz and CPT violation with Neutrinos Teppei Katori Massachusetts Institute of Technology ICHEP2012, Melbourne, Australia, July 10, /10/12Teppei.
Gravitational Experiments and Lorentz Violation Jay D. Tasson V. Alan Kostelecký Indiana University TexPoint fonts used in EMF. Read the TexPoint manual.
Influence of Lorentz violation on the hydrogen spectrum Manoel M. Ferreira Jr (UFMA- Federal University of Maranhão - Brazil) Colaborators: Fernando M.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
A Lightning Review of Dark Matter R.L. Cooper
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
4-quark operator contributions to neutron electric dipole moment Haipeng An, University of Maryland; PHENO 2009 In collaboration with Xiangdong Ji, Fanrong.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Results and perspectives of the solar axion search with the CAST experiment Esther Ferrer Ribas IRFU/CEA-Saclay For the CAST Collaboration Rencontres de.
CPT and Lorentz violation as signatures for Planck-scale physics Discrete08.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
W. Heil He/Xe Clock-Comparison Experiments PSI Limit on Lorentz and CPT Violation Using a Free Precession 3He/129Xe Co-magnetometer Background.
Biot-Savart Law for a Single Charge Electric field of a point charge: Moving charge makes a curly magnetic field: B units: T (tesla) = kg s -2 A -1 The.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Testing general relativity experimentally: Equivalence Principle Tests
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
Search for axion like pseudo scalar spin interaction with a 3He-129Xe clock comparison experiment. Ulrich Schmidt.
qBOUNCE: a quantum bouncing ball gravity spectrometer
Axion Electrodynamics
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Electric Dipole Moments: Searches at Storage Rings
dark matter Properties stable non-relativistic non-baryonic
Electric Dipole Moments: Searches at Storage Rings
Spontaneous Lorentz-Symmetry Breaking in Gravity
23rd International Spin Symposium, Ferrara, September 2018
Presentation transcript:

Searches for Lorentz violation in 3 He/ 129 Xe clock comparison experiments Outline:  Features of frequency standards and clocks  3 He/ 129 Xe „spin“-clock  Conclusion and outlook  3 He/ 129 Xe clock-comparison experiments W.Heil SSP2012, Groningen

Current accuracy: Microwave: 6 x Optical : 3 x Stable frequency Local oscillator sensitivity (absolute scale):  mHz  1 ns / day  „nuclear spin -clock“ better: reference transition at f  1 Hz with  f /f  second = 9,192, 631,770 cycles

detector Clock based on nuclear spin precession „ spin-clock“ (ms ) signal (a.u.) (G. D. Cates, et al., Phys. Rev. A 37, 2877)

Spin-clock: Detection of free spin precession :  long spin coherence times T 2 * > 1  f/f ~  free spin precession: no induced frequency shifts due to feedback phase error, light shift, etc. (Maser, Cs-M )  use of LT c -SQUIDs to detect the spin precession signal - intrinsic noise of SQUID:  1 fT/  Hz  no feedback coupling between detector and spin sample

Accuracy of frequency determination: # data points Fourier width If the noise w[n] is Gaussian distributed, the Cramer-Rao Lower Bound (CRLB) sets the lower limit on the variance example: SNR = 10000:1, = 1 Hz, T= 1 day  < >  x  0.1  m /day D=10 cm T

 n =  K  He =  K J  Xe 129 He 3  Xe =  K 3 He/ 129 Xe „spin“-clock OP-techniques: MEOP SEOP Schmidt-model:

BMSR 2, PTB Berlin 6 cm 3 He (4.5 mbar ) J. Bork, et al., Proc. Biomag 2000, 970 (2000). The 7-layered magnetically shielded room (residual field < 2 nT) LT c - SQUID magnetic guiding field  0.4  T (Helmholtz-coils)

3 He free spin-precession signal R d SQUID parameters: p He = 1-3 mbar ; P = 10-50% R =2.9 cm; d = 6cm   B = pT Signal: Note: At present, the Xe spin coherence time T 2 * is limited to due to wall relaxation 3 h < T 2 * < 4 h system noise inside BMSR-2 ~ 2 fT/  Hz

Test of CRLB via Allan Standard Deviation (ASD) Non-gaussian noise: magnetic field drifts intrinsic noise … 2  [s] ii+1 

B [nT] t [h] drift ~ 1pT/h 3 He / 129 Xe clock comparison to get rid of magnetic field drifts 129 Xe 3 He (4,7 Hz) (13 Hz) !    Hz/h B0B0

I. Earth‘s rotation II.  =  He -  He /  Xe   Xe  rem =  -  Earth  rem Subtraction of deterministic phase shifts  uncertainties in subtraction of  Earth  chemical shift: BoBo non-ideal spherical cell: Ramsey-Bloch-Siegert shift (self shift) Phase residuals +  (t) spin-coupling

ASD of phase residuals

The detection of the free precession of co-located 3 He/ 129 Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions of type:  Search for a Lorentz violating sidereal modulation of the Larmor frequency  Search for spin-dependent short-range interactions  Search for EDM of Xenon  … Observable:

Search for a Lorentz violating sidereal modulation preferred direction in space-time

SM: relativistic quantum field theory electromagnetic force weak force strong force gravitation General relativity is a classical theory, i.e., non-quantum Standard Model (SM) of particle physics Unification theories: string theory, loop quantum gravity,.. Planck scale: energy scale where gravity meets quantum physics M p ~ GeV Courtesy of C. Lämmerzahl A closer look…

Kostelecký, Perry, Pot, Samuel ’89; ’90; ’91; ’95; '00 Spontaneous Lorentz symmetry breaking in string theory e.g. Lorentz vector field makes non zero vacuum expectation value low-energy world Planck scale  GeV Background fields (tensor fields) give preferred direction e.g. rest frame of CMB D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys.Rev. D 58, (1998)  talk of Ralf Lehnert

Michelson (1881,Potsdam) Michelson&Morley (1887,Cleveland) c(  ) = c photon sector: Traditional tests of Lorentz symmetry & special relativity 19 independent parameters Li + - ions C.Novotny et al., PR A 80 (2009) ESR at GSI relativistic Doppler effect c(v) = c

Test of constancy of c Kennedy,Thorndike 1932 Hils,Hall 1990 Braxmaier 2002 Wolf 2004 Herrmann 2009 Resonators Interferometers Year

Topics: searches for CPT and Lorentz violations involving -birefringence and dispersion from cosmological sources -clock-comparison measurements -CMB polarization -collider experiments -electromagnetic resonant cavities -equivalence principle -gauge and Higgs particles -high-energy astrophysical observations -laboratory and gravimetric tests of gravity -matter interferometry -neutrino oscillations -oscillations and decays of K, B, D mesons -particle-antiparticle comparisons -space-based missions -spectroscopy of hydrogen and antihydrogen -spin-polarized matter * Theoretical studies of CPT and Lorentz biviolation involving -physical effects at the level of the SM, General Relativity, and beyond -origins and mechanisms for violations classical and quantum issues in field theory, particle physics, gravity, and strings Modern Tests of Lorentz violation

Modified Dirac equation for a free spin ½ particle (w=e,p,n) standard DECPT violatingCPT preserving terms A. Kostelecky and C. Lane: Phys. Rev. D 60, (1999) Lorentz violating terms Standard-Model Extension Experimental access: Cs- fountain Torsion pendulum Antihydrogen spectroscopy Astrophysics Hg/Cs comparison UCN/Hg comparison He/Xe maser K/He co-magnetometer coupling strength  clock comparison experiments Wolf et al., B.Heckel et al. PRD 78 (2008) matter sector -

C Coupling of spin to background field: Zeeman LV  LAB cosmic microwave background v = 368 km/s  T dip  3.3 mK

Search for a sidereal modulation of the weighted phase difference  rem  rem =  He -  He /  Xe   Xe -  Earth  s = 2  /T SD = 2  /(23 h :56 m :4.091 s ). expect strong correlated error for total data-taking time:  90 h March 2009 run:

Results of  2 -fit for the sidereal phase amplitudes a c and a s together with their correlated and uncorrelated 1  -errors. a c mrad a s mrad To demonstrate the strong dependence of the correlated error on  s, corresponding fit results are shown for multiples of  s :  ’ s = g  s Phase residuals with fit-results for Phaseamplitude of the sidereal modulation:

Kostelecky et al., Phys. Rev. D 60, (1999) 3 He: µ = µ K 129 Xe: µ = µ K n : µ = µ K Schmidt-Model free neutron: (X,Y,Z) non-rotating frame with Z along Earth‘s rotation axis Lab-frame with quantization axis z In terms of frequency: (95% C.L.) PTB Berlin:  = 52, north  = 28 0 (north-south) PRD 82 (2010)

Coefficient Proton Neutron Electron < < < <  Torsion pendulum B.R.Heckel et al., PRD 78 (2008) K- 3 He co-magnetometer J. M. Brown et al. Phys. Rev. Lett., 105, (2010). Spin maser experiments with 3 He and 129 Xe ( D.Bear et al., PRL 85 (2000) 5038 ) (95% C.L.) = e Tightest constrains on SME parameters on neutron sector: our result:

March 2012 run at PTB (1) conventional runs with B-field fixed (2) active rotation of B-field (2 h / turn)

T 2 * - improvements: FID-Amplitude ( fT ) pure 3 p=2.5 mbar : Gas mixture: p He = 2.7 mbar, p Xe = 4.9 mbar, p N2 = 24.8 mbar

Phase residuals: March 2009 subrun for comparison (shifted by 0.04 rad)  gain in SNR: 2-3  gain due to CRLB power law (~1/T 3/2 ) : 2.8  reduction of correlated error: ~ 7  total data taking time: 165 h (90 h March 2009 ) ~1.8 overall gain in sensitivity: ~ 100

(2) rotation of B-field (quantization axis) 5 subruns (~ 14 h each) BMSR-2 N S expected LV-signal: … field rotation (45 0 ) : 2.5 min measurement (static): 12.5 min … Sequence:

Change of the absolute field gradient during rotation and its effect on T 2 * data analysis ongoing

Conclusion and Outlook  3 He, 129 Xe spin clock based on free spin precession  long spin coherence times (, March 2012 run ) Search for neutron spin coupling to a Lorentz and CPT-violating background field K- 3 He and 3 He/ 129 Xe co-magnetometer set the tightest limits on SME-parameters K- 3 He co-magnetometer : 3 He- 129 Xe co-magnetometer : PRL 105, (2010) PRD 82, (2010) March 2012 run: expected gain in sensitivity ~ 100 to trace LV interactions

Short range spin-dependent interaction: J.E.Moody, F.Wilczek PRD 30 (1984) 130 September 2010 run 129 Xe electric dipole moment (Groningen-Heidelberg-Mainz collaboration): Proposal: present sensitivity of 3 He/ 129 Xe-comagnetometer: < 0.1 nHz per day Rosenberry and Chupp, PRL 86,22 (2001) ecm  Magnetometry ( 3 He)magnetometer for nEDM experiment at PSI high field : > 1 Tesla low field :  1  Tesla beat signal (a.u.) time 1.5 T ultra-high sensitive magnetometer to monitor relative field changes of 

Institut für Physik, Universität Mainz: C. Gemmel, W. Heil, H.Hofsetz, S. Karpuk, Y. Sobolev, K. T. Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg: F. Allendinger, U. Schmidt 3 He/ 129 Xe clock comparison probing fundamental symmetries K.Tullney Thank you for your attention

Search for a new pseudoscalar boson (Axion-like particle) Original proposal for Axion ( R. Peccei, H.Quinn PRL 38(1977),1440) as possible solution to the „Strong CP Problem“ that cancels the CP violating term in the QCD Lagrangian from neutron EDM we get : Modern interest: Dark Matter candidate. All couplings to matter are weak Axions, if they exist, will be very light and will mediate a macroscopic CP- force energy scale P.Q.-symmetry is spontaneously broken Gerardus 't Hooft,: QCD has a non-trivial vacuum structure that in Gerardus 't Hooft principle permits CP-violation

Galactic axions Tunable resonant cavity in magnetic field coupled to a ultra low noise microwave receiver ADMX, CARRACK 8 Tesla Axions generated in the sun Laboratory axions Polarised laser through vacuum in a strong magnetic field (PVLAS) AXION SEARCHES using the Primakoff Effect ** ** 1GHz: 4  eV E a  4 KeV “Light shines through the wall”

If axions are dark matter, they are a relic of the early universe. A particular scenario coupled with the requirement that the axion mass density not severely overclose the universe results in a lower bound to the axion mass. CAST Current Axion Search Experiments  Solar Axion Telescope – „CAST“  Dark Matter Axion Search – „ADMX“  Vacuum Optical Properties –“PVLAS“ etc.  Photon Disappearance Experiments  New Force Search – Torsion Pendulums, etc.

Short range interaction of the axion (Moody and Wilczek PRD (1984)) Yukawa-type potential with monopole-dipole coupling: axion gsgs gpgp N N nn nn F axion polarized matter unpolarized matter N n N

How to measure? 3 He Position: Close unpolarized matter (Pb-glass, BGO) 3 He Position: Far Requirement:

3 He/ 129 Xe cell Pb-glass (2009 run) BGO crystal (2010 run) Dewar housing the LT c -SQUIDs

Data processing for extraction of short-range interaction effect: 1.To cancel magnetic field influence we calculate the weighted phase difference: 2. Temporal dependence can be described by: CloseFar t0t0 Earth rotation chemical shift short range  Ramsey-Bloch-Siegert-Shift f(t)= c+(a ER +a CS +a SR )  t+a He  e -t/T2,He +a Xe  e -t/T2,Xe  SR =(a SR,close - a SR,far )   He  Xe  

Results Analysis: Average potential was calculated numerically for our cells ( Ø = 6 cm, l = 6 cm), a gap of 2.2 mm between cell inner volume and BGO crystal ( Ø = 57 mm, l = 81 mm). Due to the inequation /h < Δ(  ) the sensitivity level of g S g P can be determined by: g S g P ) B0B0 September 2010: 11 measurements (~9 hours) gap = 2.2 mm Mass sample: BGO crystal with density ρ=7.13 g/cm³ =>  SR = (-0.78 ± 1.22 ± 0.15) nHz  SR [nHz]  corr. [nHz]  uncorr. [nHz] C53-R C54-R C55-L C60-L C63-L C65-L C67-R C68-R C71-R C80-L C82-L LR

Exclusion Plot for new spin-dependent forces Adelberger 2011 our result 2010 our result 2009 Youdin 1996 Ni 1999 Hammond 1993 gap of 0.5 mm

Search for a Xe EDM I I I 129 Xe Xe EDM search short range int. CKM-C ̷ P too small to produce observed baryon asymmetry Standard-model: P,T transformation of spin and EDM

particle EDM hadron EDM nuclear EDM atomic EDM observable EDM

3   

Atomic EDM‘s  L.I.Schiff ( PR ,1963): System of non-relativistic charged point particles that interact electrostatically can not have an EDM  Heavy atoms (relativistic treatment):  d e  0  d atom  0 ~ Z 3  2 d e  P,T-odd eN interaction Tensor-Pseudotensor ~Z 2 G F C T Scalar- Pseudoscalar ~Z 3 G F C S  Nuclear EDM – finite size Schiff moment induced by P,T-odd N-N interaction ~  [ecm] Ginges & Flambaum, Phys. Rep. 397 (04) 63. Dzuba, Flambaum, Ginges, Phys. Rev. A 66 (02)  Diamagnetic atoms: [ecm] Parameter 199 HgBest alternate limit d e (e cm) 3.0  YbF:1.0  d n (e cm) 5.8  n: 2.9  CSCS 5.2  Tl:2.4  CTCT 1.5  TlF:4.5  C PS 5.1  TiF: 3   8.0  Xe: 5   less sensitive to CP violating interactions E ext E int - ++ E ext +E int =0 PRL 102, (2009)

Measurement sensitivity: 129 Xe electric dipole moment EoEo  E   E  BoBo E E Then we will reach … after 100 days of data taking: from 2010 run:  = day assume : E=2 kV/cm Observable: weighted frequency difference sensitivity limit: Rosenberry and Chupp, PRL 86,22 (2001) ecm

Xe/3He polarizer Dewar with SQUIDs 5 layer  -metal shield eddy current shield 3D field compensation University of Mainz KVI Groningen University of Heidelberg PTB Berlin Collaboration: Proposed setup  Lorentz-invariance tests  short range interations There is room for improvements:  Increase of SNR of Xe (P xe : 10%  70%)  Increase of T 2,Xe 5h (at present)  h   d Xe < ecm …new sensitivity levels for

Optical Pumping LASER absorption … …reemission of fluorescence light …transfer of angular momentum Rb-pumping 5 s 1/2 5 p 1/2 2/3 1/3 m = -1/2m = +1/2 T1T1 P = N( 1/2 ) – N( -1/2 ) N( 1/2 ) + N( -1/2 ) = 1 – (2/3) n rate equation: ++ BoBo

Optical Pumping of 3 He history : ● Spin exchange with optically pumped Rb-vapour ( SEOP ) ( Bouchiat et al., Phys. Rev. Lett. 5 (1960) 373 ) ● Optical pumping of metastable 3 He * -atoms ( MEOP ) ( Colegrove et al., Phys. Rev. 132 (1963) 2561 ) Rb 3 He p He  1 mbar p He  1-10 bar 3 He * 3 He 3 He *

MEOP: Metastabilty Exchange Optical Pumping 3 He *  1ppm L.D. Schearer 3 He : 1 mbar

Kostelecky et al., Phys. Rev. D 60, (1999) 3 He: µ = µ K 129 Xe: µ = µ K n : µ = µ K Schmidt-Model free neutron: (X,Y,Z) non-rotating frame with Z along Earth‘s rotation axis Lab-frame with quantization axis z In terms of frequency: (95% C.L.) PTB Berlin:  = 52, north  = 28 0 (north-south)

Feedback loop to get long coherence times … ( Cs-Magnetometer, Maser, … ) but …  frequency shifts due to feedback phase error  light shift  …

TSR (HD) : ß = ESR(GSI) : ß = 0.34 Ch.D.Lane, PRD 72 (2005) β (moving clock) Laser P Laser A metastable 7 Li + - ions Lamb dip

Clock-comparison experiments Kostelecky et al., arXiv: v2

Antihydrogen Spectroscopy (  J. Walz ) Torsion pendulum B.R.Heckel et al., PRD 78 (2008) spin-coupled interactions

Fundamental physics tests using Rb and Cs fountains Observable free of 1st order Zeeman-effect Wolf et al.,

  : Earth‘s rotation frequency       : Earth‘s orbital motion

Relaxation of 129 Xe (measured)

Magnetic field (measured via the He spin precession signal ) in presence of a conductor ( aluminium cylinder : diameter 56 mm, length 70 mm) removal of aluminium block Johnson noise paramagnetic effects

(l, b) = (264 o.31±0 o.04±0 o.16, +48 o.05±0 o.02±0 o.09) galactic coordinate system horizon coordinate system (observer's local horizon) PTB-Berlin (52° 31´ north, 13° 25´ east) measurement on at CMB dipole v = 368 km/s  T dip  3.3 mK

Prototype of cylindrical  -metal shield no elevated system noise inside inner shield made out of metglas (amorphous metal alloy ribbon)

Lead glass samples Ø 57 mm H = 81 mm Density = 3.9 g/cm 3

1083 nm MEOP Polarizer Mainz: 3 He SEOP Polarizer PTB: Xe He Xe N2N2

(Cohen-Tannoudji et al., PRL 22 (1969),758) Detection of magnetic field produced by oriented nuclei Results:  3 He spin precession: T 2 * = 2h 20min  sensitivity of Rb-magnetometer: BW 0.3 Hz  P He  4 mbar Improvement of measurement sensitivity:  fT/  Hz  laser for OP of 3 P> 70%  longer T 2 *-times (needed !!!) tesla tesla

False effects : Barometric formula : assume: S He S Xe x x h B0B0  = ½ ( Δ right sample - Δ left sample ) = (4.8 ± 7.0 ± 0.4) nHz drops out in From the measured value of  we get: g S g P )

1 day Gain in sensitivity compared to measurements with short coherence times: Example „short spin coherence time“:  T = 5 min   300  less sensitive ! arbitrary phase